Guia docente 2020_21
Escuela de Ingeniería Industrial
Degree in Mechanical Engineering
 Subjects
  Physics: Physics II
   Contents
Topic Sub-topic
1.- ELECTRIC CHARGE AND ELECTRIC FIELD 1.1.- Electric Charge.
1.2.- Conductors, Insulators and Induced Charges.
1.3.- Coulomb’s Law.
1.4.- Electric Field and Electric Forces.
1.5.- Electric Field Calculations.
1.6.- Electric Field Lines.
1.7.- Electric Dipoles.
2.- GAUSS'S LAW 2.1.- Charge and Electric Flux.
2.2.- Calculating Electric Flux.
2.3.- Gauss's Law.
2.4.- Applications of Gauss's Law.
2.5.- Conductors in Electrostatic Equilibrium.
3.- ELECTRIC POTENTIAL 3.1.- Electric Potential Energy.
3.2.- Electric Potential.
3.3.- Calculating Electric Potential.
3.4.- Equipotential Surfaces.
3.5.- Potential Gradient.
4.- CAPACITANCE AND DIELECTRICS 4.1.- Capacitors and Capacitance.
4.2.- Capacitors in Series and Parallel.
4.3.- Energy Storage in Capacitors and Electric-Field Energy.
4.4.- Dielectrics, Molecular Model of Induced Charge, and Polarization Vector.
4.5.- Gauss's Law in Dielectrics.
4.6.- Dielectric Constant and Permittivity.
5.- CURRENT, RESISTANCE, AND ELECTROMOTIVE FORCE 5.1.- Electric Current.
5.2.- Current and Current Density.
5.3.- Ohm’s Law and Resistance.
5.4.- Electromotive Force and Circuits.
5.5.- Energy and Power in Electrical Circuits.
5.6.- Basic Theory of Electrical Conduction.
6.- MAGNETIC FIELD 6.1.- Magnetic Field.
6.2.- Motion of Charged Particles in a Magnetic Field.
6.3.- Magnetic Force on a Current-Carrying Conductor.
6.4.- Force and Torque on a Current Loop.
6.5.- Biot-Savart’s Law.
6.6.- Magnetic Field Lines and Magnetic Flux.
6.7.- Ampère’s Law.
7.- MAGNETIC FIELD IN MATTER 7.1.- Magnetic Substances and Magnetization Vector.
7.2.- Ampère’s Law in Magnetic Media.
7.3.- Magnetic Susceptibility and Permeability.
7.4.- Paramagnetism and Diamagnetism.
7.5.- Ferromagnetism.
8.- ELECTROMAGNETIC INDUCTION 8.1.- Induction Experiments.
8.2.- Faraday-Lenz's Law.
8.3.- Induced Electric Fields.
8.4.- Eddy Currents.
8.5.- Mutual Inductance.
8.6.- Self-Inductance and Inductors.
8.7.- Magnetic-Field Energy.
9.- THERMODYNAMIC SYSTEMS 9.1.- Classical Thermodynamics.
9.2.- Thermodynamic Systems and Classification.
9.3.- State Variables and State of a System.
9.4.- Equations of State.
9.5.- Thermodynamic Equilibrium.
9.6.- Change of State, Transformation or Process.
9.7.- Quasi-static Processes.
9.8.- State and Process Functions.
10.- TEMPERATURE AND HEAT 10.1.- Thermal Equilibrium, The Zeroth Law of Thermodynamics, and Temperature.
10.2.- Thermometers and Temperature Scales.
10.3.- Ideal Gas Thermometers and the Kelvin Scale.
10.4.- Heat.
10.5.- Calorimetry and Heat Capacities.
11.- THE FIRST LAW OF THERMODYNAMICS 11.1.- Work.
11.2.- Work Done During Volume Changes.
11.3.- Internal Energy.
11.4.- The First Law of Thermodynamics.
11.5.- Internal Energy of an Ideal Gas.
11.6.- Molar Heat Capacities of an Ideal Gas.
11.7.- Adiabatic, Isothermal, Isobaric and Isochoric Processes for an Ideal Gas.
11.8.- Enthalpy.
12.- THE SECOND LAW OF THERMODYNAMICS 12.1.- Directions of Thermodynamic Processes.
12.2.- Heat Engines, Refrigerators, and Heat Pumps.
12.3.- The Second Law of Thermodynamics: Clausius and Kelvin-Planck Statements.
12.4.- Carnot Engine.
12.5.- Carnot Theorems.
12.6.- Thermodynamic Temperature.
12.7.- Entropy.
12.8.- Increase of Entropy Principle.
12.9.- Entropy Change of an Ideal Gas.
LABORATORY 1.- How to Use a Multimeter. Ohm’s Law. Direct Current. Circuit with Resistors.
2.- Linear and Non-Linear Conductors.
3.- Charge and Discharge of a Capacitor.
4.- Analysis of a Parallel Plate Capacitor with Dielectrics.
5.- Utilization of an Oscilloscope to Analyze Charge and Discharge Processes.
6.- Study of the Magnetic Field. Helmholtz Coils. Magnetic Moment. Hall Effect.
7.- Calorimetry. Water Equivalent of Calorimeter. Latent Heat of Fusion.
8.- Thermodynamics of the Ideal Gas. Heat Capacity Ratio. Adiabatic Work.
LABORATORY: UNSTRUCTURED ACTIVITY (OPEN LAB) SESSIONS Unstructured activity (open lab) sessions that cover the topics of the above cited regular laboratory sessions. A practical problem will be assigned to each team. Then, under the teacher’s supervision, each team must analyse the problem, select a theoretical model and experimental means to obtain a solution.
Universidade de Vigo            | Rectorado | Campus Universitario | C.P. 36.310 Vigo (Pontevedra) | España | Tlf: +34 986 812 000