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PREFACE

The workshop “Future Directions in Difference Equations” was held in Vigo (Spain), June
13–17, 2011, hosted by the University of Vigo. The present volume contains the proceedings of
the Workshop and consists of 18 contributions by the invited speakers.

The construction of sequences of numbers using recurrence relations, what we now call dif-
ference equations, can be traced back to the very early stages of the mathematical corpus, and
nowadays this topic has experienced a strong revitalization. This is partly due to the recent pro-
fusion of discrete models in fields like biology, economics, social sciences or physics, and partly
due to the ubiquity in science of computational methods, which have discrete nature.

There are many international conferences devoted to the topic of this workshop; for this reason,
our target was organizing a small sized meeting, with few talks and participants, but trying to get
together a selection of first–level specialists. Our purpose was to maximize the proximity between
all the speakers and participants, and to facilitate the possibility of a fruitful discussion in a friendly
atmosphere. We think that we have achieved this objective: for a week, we all enjoyed the pleasure
of sharing and learning. It was a honor for us to host all participants in Vigo.

As mentioned above, difference equations appear in a wide range of theoretical frameworks
and applications. It is not possible, and perhaps it is not desirable, to cover this spectrum in a
workshop like the present one. However, taking a look to the papers in these proceedings, one can
see that the speakers introduced a long range of methods (from algebraic geometry to numerical
computation), scopes (from mathematical analysis to classical mechanics), and motivations and
applications, like mathematical biology or physics.

Vigo, November 2011.

The Editors:
Eduardo Liz
Vı́ctor Mañosa.
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The dynamical degrees of a mapping

Eric Bedford
Indiana University, USA

bedford@indiana.edu

Abstract

Let f : X → X be a rational mapping in higher dimension. The complexity of (f,X) as
a dynamical system is measured by the dynamical degrees δp(f), 1 ≤ p ≤ dim(X). We give
the definition of the dynamical degrees and show how they are computed in certain cases. For
instance, we show that if the dynamical degree of an automorphism of a Kähler manifold is
greater than one, then it must be irrational.

1 Dynamical degree

Let us start by discussing automorphisms of C2. We say that

f(x, y) = (f1(x, y), f2(x, y)) : C2 → C2

is a polynomial mapping if the coordinate functions f1 and f2 are polynomials, and we define the
degree of f as deg(f) := max(deg(f1),deg(f2)). The degree is not invariant under conjugation.
That is, if L is linear, then the deg(L) = 1, but if f is a polynomial automorphism, then in general
deg(f ◦ L ◦ f−1) ≥ 1, and with suitable choice of f , this degree can be arbitrarily large. The
behavior of deg under composition is deg(f ◦ g) ≤ deg(f)deg(g). Thus we may define the
dynamical degree as

δ(f) := lim
n→∞

deg(fn)1/n.

It follows that δ(f) = δ(h−1 ◦ f ◦ h), so the dynamical degree is invariant under conjugation.
The condition δ > 1 corresponds to exponential growth of degree under iteration, and this may be
viewed as “degree complexity.” Let us consider two examples:

h(x, y) = (y, ϕ(y)− αx), k(x, y) = (x, y + ϕ(x)), (1)

where ϕ is a monic polynomial. We see that the iterative behavior of the two maps in (1) is
rather different: δ(h) = deg(ϕ), and δ(k) = 1. The following result from [8] gives a satisfying
characterization of the situation for polynomial automorphisms of C2:

Theorem 1.1. If f is a polynomial automorphism of C2 with δ(f) > 1, then f is conjugate
to a map of the form h1 ◦ · · · ◦ hj , where hi = (y, ϕi(y) − αix). In particular, δ(f) =
deg(ϕ1) · · · deg(ϕj) is an integer.

3



4 ERIC BEDFORD

The maps hi that appear in the Theorem are called generalized Hénon maps. The Hénon represen-
tation achieves minimal degree, and this representation is an essentially unique representative of
the conjugacy class. Thus if we have a Hénon representative, we know the dynamical degree. As
will be seen in Theorem 6.1 below, the fact that δ(f) is an integer prevents f from being conjugate
to a compact surface automorphism.

Now let us consider maps of projective space. Let (f0, . . . , fk) be a k+1-tuple of polynomials
which are homogeneous of degree d. We may assume that the fi have no common factor. The set
I(f) := {x ∈ Pk : f0(x) = · · · = fk(x) = 0} (which is possibly empty) has codimension at least
2. Then f = [f0 : · · · : fk] : Pk − I(f)→ Pk is holomorphic. At each point p ∈ I(f), however,
f is discontinuous and in fact “blows up” p to a set of positive dimension. A topological fact is
that the cohomology groupsH2(Pk;Z) andH1,1(Pk;Z) are both isomorphic to the Picard group
Pic(X). The Picard group is the set Div(X)/ ∼ of integral divisors modulo linear equivalence.
That is, a divisor D is linearly equivalent to zero if D = div(h), where h denotes a rational (or
meromorphic) function h on X , and div(h) = Zeros(h) − Poles(h) is the associated divisor.
Pic(Pk) is generated by the class of a hyperplane H = {

∑
cjxj = 0}. To see this, suppose that

V = {P = 0} is the zero set of a polynomial of degree m, then for 0 ≤ j ≤ k, h := P/xmj is a
well defined rational function, which shows that [V ] = m[H] in Pic. The action of f∗ on Pic is
composition: f∗{P = 0} = {P ◦ f = 0}, so f∗[H] = d · [H].

More generally, if π : X → Pk is a blowup space, then we have the induced map fX :=
π−1 ◦ f ◦ π on X . We have well-defined pullback maps f∗ on H1,1(P2) and f∗X on H1,1(X). We
can use f∗ to define the degree of f . We can use either f∗ or f∗X to define the dynamical degree:

δ(f) = lim
n→∞

||(fn)∗||1/n, (2)

where || · || denotes any norm on H1,1(X), H2(X), or in nice cases, Pic(X).
In particular if X is a compact manifold, the formula (2) can be used to define δ(f) for any

meromorphic map f : X → X . The following is evident:

Proposition 1.2. If (fn)∗ = (f∗)n on H1,1 for n > 0, then δ(f) is the spectral radius of f∗, i.e.,
the modulus of the largest eigenvalue of f∗. In this case, δ(f) is an algebraic integer.

2 Finding automorphisms by blowing up space

Let us illustrate this with maps of the form

fa,b(x, y) =

(
y,
y + a

x+ b

)
for fixed constants a and b. This family is conjugate (via affine transformations) to the family
Fα,β(x, y) = (y, y/x) + (α, β), and we are free to work with the maps in either form. fa,b is a
birational map of the plane, and we may extend fa,b to a compactification of the plane. We start
by extending it to the projective space P2 = {[x0 : x1 : x2]} with (x, y) ↔ [1 : x : y]. Thus
P2 = C2 ∪ L∞, where L∞ = {x0 = 0} is the line at infinity. In homogeneous coordinates we
have

fa,b[x0 : x1 : x2] = [x0(x1 + bx0) : x2(x1 + bx0) : x0(x2 + ax0)].
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In order to understand the map fa,b, we will try to see whether there is a “better” compactifi-
cation. We start by observing that there is a triangle of lines which are mapped to points:

L∞ = {x0 = 0} → e1 := [0 : 1 : 0], {x+ b = 0} = {bx0 + x1 = 0} → e2 := [0 : 0 : 1],

{y + a = 0} = {ax0 + x2 = 0} → q := (−a, 0) = [1 : −a : 0].

We have given the lines of the triangle both in coordinates (x, y) on C2 and [x0 : x1 : x2] on P2.
The points e1, e2 and p := (−b,−a) are indeterminate. The point e2, for instance, is contained in
both {x + b = 0} and L∞, so it must blow up to a connected set containing the images of both
of these lines. In this case we have the simplest possibility: e2 blows up to {x0 = 0}, the line
through e2 and e1.

We describe the operation of blowing up the origin (0, 0) ∈ C2. We define

Ĉ2 = {(x, ξ) = ((x1, x2), [ξ1 : ξ2]) ∈ C2 ×P1 : x1ξ2 = x2ξ1}

and π(x, ξ) = x. We say that π : Ĉ2 → C2 is the blowup map, and the blowup space Ĉ2

is a (smooth) complex manifold with the properties: E := π−1(0, 0) is equivalent to P1, and
π : Ĉ2 − E → C2 − (0, 0) is biholomorphic. Ĉ2 is covered by the open sets {ξj 6= 0}, j = 1, 2.
If ξ1 6= 0, then we may suppose that ξ1 = 1 and represent this open set by the coordinate chart
C2 3 (t, η) → (x, ξ), where x = (t, tη) and ξ = [1 : η]. In this coordinate chart, we have
E ∩ {ξ1 6= 0} = {t = 0}.

The blowup is a local operation, and we may construct a manifold π : X → P2 by blowing
up P2 at the points e1 and e2. Here we use the notation Ej = π−1ej . The blowup space X is
defined by the properties: π : X − (E1 ∪ E2)→ P2 − {e1, e2} is biholomorphic, and Ej ∼= P1,
for j = 1, 2. To work in a coordinate chart at E2 we let π̃ : X → P2 be given by π̃((x0, x1), [ξ0 :
ξ1]) = [x0 : x1 : 1] be the blowup map over (x0, x1) = (0, 0) = [0 : 0 : 1]. The coordinate chart
for ξ0 6= 0 is given by C2 3 (t, η) → (x, ξ) with x = [t : tη : 1]. Thus the inverse is given by
π̃−1[x0 : x1 : 1] = (t = x0, η = x1/x0).

Since π is a birational map, we have an induced map fX := π−1 ◦ f ◦ π : X → X . Now we
show that the map fX sends {x+ b = 0} to E2. For this we write

f : C2 → P2, f(x, y) =

[
1 : y :

y + a

x+ b

]
=

[
x+ b

y + a
:
y(x+ b)

y + a
: 1

]
.

so π̃−1f(x, y) = (t = (x+ b)/(y + a), η = y). This means that {x+ b = 0} is taken to {t = 0},
i.e., to E2.

A similar computation shows that fX is a smooth mapping from E2 to L∞ = {x0 = 0}. This
time we write π̃(t, η) = [t : tη : 1] = [1 : η : t−1]. Thus we have

fX : (t, η) 7→ f(π̃(t, η)) = f(η, t−1) =

[
1 : t−1 :

t−1 + a

η + b

]
=

[
t : 1 :

1 + at

η + b

]
.

Thus fX takes E2 = {t = 0} to {x0 = 0}, and fX is smooth for η 6= −b.
If p ∈ P2 − {e1, e2}, we write p for its image π−1p in X and we let {y + a = 0} denote the

closure in X of the image π−1{y+ a = 0}. Arguing as above, we find that {x+ b = 0} → E2 →
L∞ → E1, and:
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Proposition 2.1. The only indeterminate point for fX is p, and the only exceptional curve (i.e.,
the only curve which maps to a point) is {y + a = 0}.

Now we define a subset of parameter space

Vn := {(a, b) ∈ C2 : fnX(q) = p} = {(a, b) ∈ C2 : fna,b(−a, 0) = (−b,−a)}.

The following is from [3]:

Theorem 2.2. Fix n ≥ 0. Then (a, b) ∈ Vn if and only if there is a space π : Y → X such that
fY is an automorphism of Y .

Suppose that (a, b) ∈ Vn. Define Qj := f jX(q) for 0 ≤ j ≤ n. Now let π : Y → X denote
the manifold obtained by blowing up the points q0, q1, . . . , qn. We write Qj := π−1qj . If we write
local charts as we did for the case {x+ b = 0}, we see that the set {y+ a = 0} is not exceptional
for fY . Similarly, working as we did at E2 above, we see that fY is not indeterminate at P = Qn.
We saw already that fX is a local diffeomorphism at all the intermediate points qj , so fY is a local
diffeomorphism at Qj .

3 Finding the degree

If X is a space obtained by blowing up P2, then the cohomology groups H2(X;Z) and

H1,1(X;Z) := H1,1(X;C) ∩H2(X;Z)

are both isomorphic to the Picard group Pic(X). The Picard group is the set Div(X)/ ∼ of
integral divisors modulo linear equivalence. It is a standard fact that if π : X → P2 is the blow
up of P2 at distinct points p1, . . . , pN , then a Z-basis for Pic(X) is given by HX , P1, . . . , PN ,
where HX = π−1L is the class of any line L which is disjoint from all the pj , and Pj is the class
of the divisor π−1pj . If C ⊂ P2 is any curve, then we let [C]X denote its class in Pic(X). Thus
π∗[C]X = m ·HX +

∑
µjPj , where m denotes the degree of C, and µj is the multiplicity of C

at pj . (If pj /∈ C, then µj = 0.)
If f : X → X is a rational map, then the pullback map f∗X is a well-defined linear map of

Pic(X). We will consider f∗X = (mi,j) as a matrix with integer entries with respect to the ordered
basis HX , P1, . . . , PN . Thus

f∗[L] = m1,1[L] + linear combination of P1, . . . , PN .

Proposition 3.1. The entry m1,1 in f∗X is the degree of f .

In particular, we conclude that if (fnX)∗ = (f∗X)n, then the degree of fn is the (1,1)-entry of
the matrix (mi,j)

n and thus satisfies a linear recurrence.
Now we consider the space X obtained in the previous paragraph by blowing up e1 and e2.

The induced map f∗ on Pic(X) acts according to

E1 → L∞ → E2 → [x+ b = 0].

Thus, f∗ : E1 → HX − E1 − E2 and E2 → HX − E2.
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Next we need to determine what f∗X does to HX . We start by looking at P2; since f has
degree 2, f−1H is a quadric. Both centers of blowup are indeterminate and blow up to lines. Thus
a general line H ⊂ P2 intersects each of these blowup images with multiplicity one, so f−1H is
a quadric which goes through both e1 and e2. In terms of divisors, this means that

f∗XHX = 2HX − E1 − E2.

With respect to this basis we have

f∗X =

 2 1 1
−1 −1 0
−1 −1 −1

 .

Let us suppose that (a, b) ∈ Vn and let π : Y → X to be the blowup of the points q0, . . . , qn
as in the previous paragraph. Thus Pic(Y ) = 〈HY , E1, E2, Qn, Qn−1, . . . , Q1〉. As above, the
exceptional fibers are mapped as

fY : P = Qn → Qn−1 → · · · → Q1 → {y + a = 0}.

In terms of divisors we have [y+a = 0]Y = HY −P−E1 and [x+b = 0]Y = HY −E1−E2−P ,
and f∗YHY = HY −E1−E2−P . The difference between [·]X and [·]Y arises because the curves
may contain different centers of blowup. Thus with respect to this ordered basis of Pic(Y ), we
have

f∗Y =



2 1 1 1
−1 −1 0 −1
−1 0 −1 0

0 −1
1 0

1 0
1 0


.

Proposition 3.2. The characteristic polynomial of the matrix above is

χn(t) = tn+1(t3 − t− 1) + t3 + t2 − 1.

If λn denotes the largest root of χn, then λ7 > 1, and λn is increasing in n.

We conclude that if (a, b) ∈ Vn, then δ(f) = λn, and thus δ(f) > 1 if n ≥ 7.

4 Matrix inversion and variations

LetMq denote the space of q× q matrices, and let P(Mq) =M∗q/C∗ denote its projectivization.
We consider the mapping J defined on q × q matrices by component-wise inversion: J(xi,j) =
(1/xi,j). J is clearly smooth at the matrices x for which the entries are all nonzero. We may
also write J as a matrix of polynomials by setting J(x) = (x−1i,j

∏
x), where

∏
x :=

∏
(µ,ν) xµ,ν

is the product of all of the entries of x. Thus we see that J has degree q2 − 1 on P(Mq). We
let I(xi,j) = (xi,j)

−1 be the usual matrix inversion. Recall the familiar formula for I(x) as
the quotient of the classical adjoint, formed from the (q − 1) × (q − 1) minors, divided by the
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determinant. From this we see that I has degree q − 1 as a self-map of P(Mq). Both of the
maps I and J are rational involutions, defined and regular on dense subsets of P(Mq). We will
be concerned with the map K = I ◦ J which is a birational map, and I−1 ◦ K ◦ I = K−1, so
K is reversible, in the sense of being conjugate to its inverse. To suggest that there is subtlety in
composing these maps, we note that:

Proposition 4.1. The degree of K = I ◦ J is q2 − q + 1 < max(deg(I),deg(J)).

The map K was studied by Anglès d’Auriac, Maillard, and Viallet [1], as well as the restric-
tions of K to the subspaces Sq of symmetric matrices, and to Cq of cyclic matrices, which have
the form 

a0 a1 . . . aq−1
a0 a1
. . . . . .

a1 a2 . . . a0

 .

Based on their analysis (largely numerical) of these maps, they conjectured the following:

Theorem 4.2. The dynamical degrees of all three maps coincide:

δ(K) = δ(K|Sq) = δ(K|Cq),

and this number is the largest root of t2 − (q2 − 4q + 2)t+ 1.

This Theorem was proved as a combination of results in [5] and [12]. We note that passing to
a linear subspace does not increase the degree, so the inequalities δ(K) ≥ δ(K|Sq) and δ(K) ≥
δ(K|Cq) follow easily. The restriction K|Cq introduces symmetries that make the map much easier
to deal with. On the other hand, the additional symmetries make the restriction K|Sq harder to
deal with than the unrestricted K. The set of symmetric, cyclic matrices SCq = Sq ∩ Cq is also
invariant under K. This introduces all of the symmetries of Cq as well as Sq, so there are different
sorts of symmetries. The map q 7→ δ(K|SCq) depends on q in a more complicated way (see [4]).

5 The maps I , J and K

The maps I and J are involutions, so δ(I) = δ(J) = 1. We discuss the process of regularizing
them by blowing up. We define the set Σi,j to be the set of matrices for which the (i, j)-entry
vanishes. Similarly, we let ei,j denote the matrix for which all entries are zero except in the
location (i, j). Now we consider J as a map of P(Mq). J is regular at each x = (xi,j) for which
all the entries xi,j 6= 0. We see that J(Σi,j − I(J)) = ei,j . Conversely, since J = J−1, we see
that J blows ei,j up to Σi,j . Given a point x = (xi,j), we let T (x) be the set of all (i, j) such
that x ∈ Σi,j . Then J blows up x to the linear subspace generated by {ei,j : (i, j) ∈ T (x)},
which is

⋂
(µ,ν)/∈T (x) Σµ,ν . For instance, if xi1,j1 = xi2,j2 = 0, and if all other entries of (xi,j) are

nonzero, then J blows up x to the line passing through ei1,j1 and ei2,j2 . J is indeterminate at the
sets Σi1,j1 ∩ Σi2,j2 for which (i1, j1) 6= (i2, j2). In fact,

I(J) =
⋃

(i1,j1)6=(i2,j2)

Σi1,j1 ∩ Σi2,j2 . (3)
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Now we define the space π : X → P(Mq) in which all points ei,j ∈ P(Mq), 1 ≤ i, j ≤ q,
are blown up. The fiber π−1ei,j ∼= Pq2−2 is the projectivization of the normal bundle to P(Mq) at
ei,j . (The space of tangent vectors normal to a point is the space of all tangent vectors at that point.)
That is, if ν is a vector normal to ei,j , then the curve t 7→ π−1(ei,j + tν) lands at a unique point
ν̂ ∈ Ei,j as t→ 0. The space Pic(X) is spanned by the class of a general hypersurface HX ⊂ X
and the classes of exceptional divisors Ei,j . To define the map J∗X : Pic(X)→ Pic(X), we start
with the observation that J−1Ei,j = Σi,j , so the class Ei,j is taken to the class of Σi,j in Pic(X).
Since the class of Σi,j is the same as a general hypersurface HX , except that it is missing the Eµ,ν
for all (µ, ν) 6= (i, j), we have

Ei,j 7→ HX −
∑

(µ,ν)6=(i,j)

Eµ,ν . (4)

It remains to determine J∗(HX). On P(Mq) we have J∗H = (q2 − 1)H . This is because if
we represent H =

∑
ci,jxi,j as a linear function, then J∗H =

∑
ci,jJi,j =

∑
i,j ci,jx

−1
i,j

∏
x is

represented by the linear combination of the coordinates of J . At the point e1,1, for instance, the
(1,1) component of J vanishes to order to q2−2, and the other components vanish to order q2−1.
Thus if all the ci,j are non-vanishing, we see that the multiplicity (order of vanishing) of J at the
point eµ,ν is q2 − 2. Thus we have

J∗(HX) = (q2 − 1)HX − (q2 − 2)
∑
µ,ν

Eµ,ν . (5)

Proposition 5.1. The equations (4) and (5) together determine the linear map J∗X on Pic(X).

More details of proof can be found in [2].
Now we discuss the map I briefly. The matrix x = diag(0, λ2, . . . , λq) ∈ P(Mq) is mapped

to I(x) = diag(1, 0, . . . , 0). More generally, if x has rank q − 1, then we let v ∈ Cq gen-
erate the kernel, and we let w be an element of the dual space Cq∗ such that its kernel is the
range of x. It may be shown that for matrices of rank q − 1, the inverse I (projectively), inter-
changes kernel and range, so I(x) = v ⊗ w = (viwj) is a matrix of rank 1. In particular, the
set Rq−1 := {x ∈ P(Mq) : det(x) = 0} is the exceptional hypersurface for I , and the im-
age I(Rq−1) = R1 is the set of matrices of rank 1. To regularize I , we construct the manifold
π : Z → P(Mq), which blows up the set R1 of rank 1 matrices. Let R1 := π−1(R1) denote
the exceptional divisor. Near the point x0 := diag(1, 0, . . . , 0), the set of rank 1 matrices are
parametrized by (x2, . . . , xq, y2, . . . , yq) 7→ x̂t⊗ ŷ := (1, x2, . . . , xq)

t⊗ (1, y2, . . . , yq). The fiber
π−1x0 can be interpreted as the (projectivized) (q − 1)× (q − 1) matrices

ξ̂ :=


0 0 . . . 0
0 ξ2,2 . . . ξ2,q

0
...

...
0 ξq,2 . . . ξq,q

 ,

and a point near the fiber over x0 is given by x̂t ⊗ ŷ + sξ̂ for some scalar s ∈ C.

Proposition 5.2. The map IZ := π−1 ◦ I : P(Mq) → Z is a local diffeomorphism at generic
points of Rq−1. Further, IZ is regular at all points of Rq−1 with rank q− 1, and IZ is a birational
map from Rq−1 toR1.



10 ERIC BEDFORD

Finally we turn to the map K = I ◦ J . Let us define Ai,j to be the set of all matrices (x`,m)
whose entries are zero everywhere on the i-th row and the j-th column. This is a linear subspace of
P(Mq). We find thatK(Σi,j) = Ai,j . Thus we will need to work with the space π : X → P(Mq)
in which all the subspaces Ai,j are blown up, and R1 = J(R1) is blown up, in addition. We let
KX := π−1 ◦ K ◦ π be the induced map of X . In the new space X , Σi,j is not exceptional for
KX . Let us define the subsetsAi,j := π−1Ai,j . We find that KX mapsAi,j to Bj,i := Aj,i∩Σj,i.
So each Ai,j is exceptional. We now construct the space π : Y → X in which all the subsets
Bi,j ⊂ X are blown up. Working with the induced map KY we can determine the dynamical
degree δ(K). Further details are in [5].

6 Intermediate degrees

In the case of projective space X = Pk, we let ω denote a positive, closed (1,1)-form. Thus ω
defines a Kähler metric on Pk. We write the exterior powers as ωp = ω ∧ · · · ∧ ω and set βp :=
ωp/p! . Let M ⊂ Pk be a compact complex submanifold of codimension p. Let us normalize ω
so that

∫
Pk ω

k/k! =
∫
Pk βk = 1. With this normalization, the volume of a (linear) hyperplane H

with respect to the metric ω is Vol(H) =
∫
H βk−1 = 1. It is a classical result that the codimension

2p volume of M (with respect to the metric defined by ω) is given by Vol(M) =
∫
M βp. Thus

we have the identity between volume and cohomology class, and we use this to define degree in
codimension p. Specifically, if Lp is a linear subspace of codimension p, then the class {Lp}
generates Hp,p(Pk;Z), and the classes {Lp} = {βp} are equal. So the class {M} is a multiple of
this class, and we use this to define the degree:

{M} = degp(M) {Lp} where degp(M) =

∫
M
βp.

This remarkable identity between degree, volume and topology serves to extend the previous def-
inition of degree to intermediate dimensions.

For a rational map f : X → Y , there is a well-defined map on all cohomology groups
f∗ : Hp,q(Y ) → Hp,q(X). When X = Pk, we may use this to define the degree degp by the
equation degp(f) {βp} = f∗{βp}. This is given as an integral:

degp(f) =

∫
Pk

βk−p ∧ f∗βp.

The quantity degp is not invariant under conjugacy. However, we see that

degp(f ◦ g) ≤ degp(f)degp(g),

so we can define the dynamical degree as δp(f) := limn→∞
(
degp(f

n)
)1/n. If ϕ is a birational

map of Pk, then we have δp(f) = δp(ϕ
−1 ◦ f ◦ ϕ).

For general X is it natural to define the intermediate dynamical degrees by setting

δp(f) := lim
n→∞

||fn∗|Hp,p ||1/n.

In fact, if f is holomorphic, then (fn)∗|Hp,p = (f∗|Hp,p)n. Thus δp(f) is the spectral radius
of f∗|Hp,p . In this case δp is an algebraic integer for all p. It is natural to ask whether δp is an
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algebraic integer when f is merely rational. The material above was taken from Russakovskii and
Shiffman [11], and the reader is invited to consult the original paper.

It is clear that the same definition applies to meromorphic maps of complex manifolds. In the
case of a compact, Kähler manifold, it is classical that p 7→ log δp(f) is concave in p. We have
δ0(f) = 1 and δk(f) ≥ 1 for all maps. Thus if δ`(f) > 1 for some 0 < ` ≤ k, the concavity
implies we have δp(f) > 1 for all 0 < p < k.

The following was obtained jointly with Jan-Li Lin:

Theorem 6.1. If f is an automorphism of a compact, Kähler manifold, and if δ`(f) > 1 for some
0 < ` < k, then δp(f) is irrational for all 0 < p < k.

Proof. By the remark above, we have δp(f) > 1 for all 0 < p < k. Let us suppose that
δp(f) is rational. If f is an automorphism of X , then δp(f) is the spectral radius (modulus of the
largest eigenvalue) of f∗|Hp,p . Since Hp,p is an invariant subspace of H2p(X;C), an eigenvalue
of this restriction will also be an eigenvalue of f∗ acting on H2p(X;C). Since f∗ also preserves
H2p(X;Z) we may consider f∗ as a matrix with integer coefficients. The characteristic polyno-
mial χ(x) of f∗ is monic. Thus all eigenvalues of f∗ are algebraic integers. Let µ be an eigenvalue
with maximum modulus.

If µ is real, then µ = ±δp(f) is rational. It is elementary that every rational, algebraic integer
actually belongs to Z. Now, since f∗ is an invertible, integer matrix, its determinant is ±1. Thus
the characteristic polynomial has the form χ = xm + · · · ± 1. On the other hand, since µ is
an integer zero of χ, (x − µ) is a factor of χ(x). This means that χ(x) = (x − µ)p(x) =
(x− µ)(xm−1 + · · ·+ c0) = xm + · · · − µc0 = xm + · · · ± 1. This is not possible since c0 is an
integer, and |µ| > 1.

If µ is not real, then we have |µ| = |µµ̄|1/2 = δp(f), which is assumed to be rational. Now
let α3, . . . , αm denote the other roots of χ. Since these are algebraic integers, it is elementary
(see [10]) that their product α3 · · ·αm is also an algebraic integer. Since µµ̄α3 · · ·αm = ±1,
we conclude that both µµ̄ and α3 · · ·αm are rational. Since, in addition, these are both algebraic
integers, they both are integers. But this contradicts the assumption that |µ| > 1.

7 Monomial maps

The intermediate dynamical degrees are important for understanding the dynamical behavior.
They are invariant under birational conjugacies in the following strong sense: If ϕ : X → Y
is birational, and if g := ϕ−1 ◦ f ◦ϕ, then δp(f,X) = δp(g, Y ) (see [6]). In the same paper, Dinh
and Sibony give an estimate on the topological entropy of f :

htop(f) ≤ log max(δ1(f), . . . , δk(f)).

In case f is holomorphic, this is known to be an equality. And if f is holomorphic, then f∗ on
Hp,p, is represented by an integer matrix. The degree δp will be the spectral radius of this matrix
and thus an algebraic integer. On the other hand, it is a different matter to try to find δp for maps
which do not satisfy (f∗)n = (fn)∗ on Hp,p.

So far, the only nontrivial class on which δp has been computed is the monomial maps. Let
A = (ai,j) be a k × k matrix with integer entries. We let

fA(x) =

∏
j

x
a1,j
j , . . . ,

∏
j

x
an,j

j
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be the monomial map defined by A. It is easily seen that fnA = fAn , so the iterates are easily
given. Further, fA is a well defined rational map of Pk, and f∗A[Lp] = degp(fA)[Lp]. In fact, this
number is given by an integral: degp(f) =

∫
βk−p∧f∗βp. The number δp would then be the limit

of (degp(f
n))1/n as n → ∞. Although this approach is simple to describe, it seems not to be so

simple to carry out.
A useful approach to finding the number δp in the case of monomial maps is to change the

space X = Pk to the space Y = (P1)k = P1 × · · · ×P1, which is birationally equivalent to X .
We may let [xj : yj ] be homogeneous coordinates on the j-th factor of P1. Then a basis for Hp,p

is given by the classes LI = {xi1 = · · · = xip = 0}, where I = (i1, . . . , ip) is a p-tuple of indices
1 ≤ ij < · · · < ip ≤ k. (Of course, these are the same as the classes {ζi1 = · · · = ζip = 0},
where each ζj is either xj or yj .) We consider {LI} as an ordered basis for Hp,p(Y ). Given a
matrixM = (mi,j) let us use the notation |M | := (|mi,j |) for the matrix consisting of the absolute
values of the entries of M . The action of f∗A on Hp,p(Y ) now has a simple description (see [9]):

Proposition 7.1. Let M :=
∧pA denote the p-th exterior power of the matrix A. Then when we

write the basis 〈LI〉 suitably, the action f∗A|Hp,p is given by |M |.

While we are working with (P1)k, it is useful to consider the degree as the matrix Degp(f)

which represents f∗Hp,p . For instance,A =

(
1 −1
−2 −3

)
, so we have fA(x1, x2) = (x1/x2, x

−2
1 x−32 ).

In homogeneous coordinates, this becomes

fA : [x0 : x1 : x2] 7→ [x21x
3
2 : x31x

2
2 : x50],

so deg1(fA) = 5, and Deg1(fA) =

(
1 1
2 3

)
.

Now let us write the eigenvalues of A as µ1, . . . , µk, where |µ1| ≥ |µ2| ≥ · · · ≥ |µk|. The
following result, obtained independently by C. Favre and E. Wulcan [7], and J-L Lin [9], gives the
dynamical degrees:

Theorem 7.2. The dynamical degrees are δp(fA) = |µ1 · · ·µp|, 1 ≤ p ≤ k.

The idea of why the Theorem follows from the Proposition is as follows. The exterior product
is (
∧pA)(v1 ∧ · · · ∧ vp) := (Av1) ∧ · · · ∧ (Avp). If vi is an eigenvector satisfying Avi = µivi,

then (
∧pA)(v1 ∧ · · · ∧ vp) = (µ1 · · ·µp)v1 ∧ · · · ∧ vp. The size of

∧p(An), and thus |
∧p(An)|,

can be estimated above and below by |µ1 · · ·µp|n, which gives the claimed exponential growth.
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