Guia docente 2023_24
Escola de Enxeñaría Industrial
Grado en Ingeniería Biomédica
 Subjects
  Physics: Physics I
   Contents
Topic Sub-topic
1.- UNITS, PHYSICAL QUANTITIES AND VECTORS 1.1.- The nature of Physics.
1.2.- Consistency and conversions of units.
1.3.- Uncertainty and significant figures.
1.4.- Estimates and orders of magnitude.
1.5.- Vectors and sum of vectors.
1.6.- Vector components.
1.7.- Unitary vectors.
1.8.- Vector products.
1.9.- Sliding Vectors
2.- KINEMATICS 2.1.- Position, speed and acceleration vectors. Average and instantaneous values.
2.2.- Angular speed and angular acceleration. Average and instantaneous values.
2.3.- Relation between linear kinematic magnitudes and angular magnitudes.
2.4.- Intrinsic components.
2.5.- Study of simple movements: linear motion in 1D, circular motion, projectile motion.
2.6.- Expression of kinematic magnitudes in cartesian and polar coordinates
3.- NEWTON'S LAWS OF MOTION 3.1.- Force and interactions.
3.2.- Newton's first law. Inertial and non-inertial reference systems.
3.3.- Newton's second law.
3.4.- Mass and weight.
3.5.- Newton's third law.
3.6.- Momentum. Mechanical impulse. Angular momentum.
3.7.- Contact forces.
4.- WORK AND KINETIC ENERGY 4.1.- Work done by a force. Power.
4.2.- Kinetic energy.
4.3.- Conservative Forces
4.4.- Elastic potential energy.
4.5.- Potential energy in the gravitatory field.
4.6.- Mechanical energy.
4.7.- Force and potential energy.
4.8.- Principle of conservation of mechanical energy.
5.- KINEMATICS OF SYSTEM OF PARTICLES 5.1.- System of particles.
5.2.- Rigid body.
5.3.- Translation movement.
5.4.- Movement of rotation around a fixed axis.
5.5.- General movement.
5.6.- Instantaneus center of rotation.
5.7.- Rolling motion.
5.8.- Relative movement.
6.- DYNAMICS OF SYSTEMS OF PARTICLES 6.1.- Systems of particles. Internal and external forces.
6.2.- Centre of mass. Movement of the centre of mass.
6.3.- Equations of the movement of a system of particles.
6.4.- Linear momentum. Conservation of linear momentum.
6.5.- Angular moment of a system of particles. Conservation of angular momentum.
6.6.- Work and power.
6.7.- Potential energy and kinetics of a system of particles.
6.8.- Conservation of energy of a system of particles.
6.9.- Collisions.
7.- RIGID BODY DYNAMICS 7.1.- Rotation of a rigid body around a fixed axis.
7.2.- Moments and products of inertia.
7.3.- Calculation of moments of inertia.
7.4.- Steiner's theorem.
7.5.- Moment of a force and pair of forces.
7.6.- Equations of the general movement of a rigid body.
7.7.- Kinetic energy in the general movement of a rigid body.
7.8.-Work in the general movement of a rigid body.
7.9.- Angular momentum of a rigid body. Conservation theorem.
8.- STATICS 8.1.- Equilibrium of rigid bodies.
8.2.- Center of gravity.
8.3.- Stability.
8.4.- Degrees of freedom and links
9.- PERIODIC MOTION 9.1.- Description of the oscillation.
9.2.- Simple harmonic motion.
9.3.- Energy in the simple harmonic motion.
9.4.- Applications of simple harmonic motion.
9.5.- The simple pendulum.
9.6.- The physical pendulum.
9.7.- Damped oscillations.
9.8.- Forced oscillations and resonance.
10.- FLUID MECHANICS 10.1.- Density.
10.2.- Pressure in a fluid.
10.3.- Fundamental principles of fluidostatics.
10.4.- Continuity equation.
10.5.- Bernoulli equation.
11.- MECHANICAL WAVES 11.1.- Types of mechanical waves.
11.2.- Periodic waves.
11.3.- Mathematical description of a wave.
11.4.- Speed of a transverse wave.
11.5.- Energy of the wave movement.
11.6.- Wave interference, boundary conditions and superposition.
11.7.- Stationary waves on a string.
11.8.- Normal modes of a rope.

LABORATORY 1.- Theory of Measurements, Errors, Graphs and Fittings. Examples.
2.- Reaction Time.
3.- Determination of the density of a body.
4.- Relative Movement.
5.- Instantaneous speed.
6.- Study of the Simple Pendulum.
7.- Experiences with a helical spring.
8.- Damped and forced oscillations.
9.- Moments of inertia. Determination of the radius of rotation of a body.
10.- Stationary waves.
LABORATORY NO STRUCTURED 1. Sessions with no structured activities (open practice) from the theoretical contents of the practices enumerated above. The groups of students shall resolve a practical problem proposed by the professor, selecting the theoretical frame and experimental tools to obtain the solution; for this, they will have basic information and the guide of the professor.
Universidade de Vigo            | Reitoría | Campus Universitario | C.P. 36.310 Vigo (Pontevedra) | España | Tlf: +34 986 812 000