Guia docente 2019_20Escola de Enxeñería Industrial
 Degree in Mechanical Engineering Subjects Physics: Physics II Contents
 Topic Sub-topic 1.- ELECTRIC CHARGE AND ELECTRIC FIELD 1.1.- Electric Charge. 1.2.- Conductors, Insulators and Induced Charges. 1.3.- Coulomb’s Law. 1.4.- Electric Field and Electric Forces. 1.5.- Electric Field Calculations. 1.6.- Electric Field Lines. 1.7.- Electric Dipoles. 2.- GAUSS'S LAW 2.1.- Charge and Electric Flux. 2.2.- Calculating Electric Flux. 2.3.- Gauss's Law. 2.4.- Applications of Gauss's Law. 2.5.- Conductors in Electrostatic Equilibrium. 3.- ELECTRIC POTENTIAL 3.1.- Electric Potential Energy. 3.2.- Electric Potential. 3.3.- Calculating Electric Potential. 3.4.- Equipotential Surfaces. 3.5.- Potential Gradient. 4.- CAPACITANCE AND DIELECTRICS 4.1.- Capacitors and Capacitance. 4.2.- Capacitors in Series and Parallel. 4.3.- Energy Storage in Capacitors and Electric-Field Energy. 4.4.- Dielectrics, Molecular Model of Induced Charge, and Polarization Vector. 4.5.- Gauss's Law in Dielectrics. 4.6.- Dielectric Constant and Permittivity. 5.- CURRENT, RESISTANCE, AND ELECTROMOTIVE FORCE 5.1.- Electric Current. 5.2.- Current and Current Density. 5.3.- Ohm’s Law and Resistance. 5.4.- Electromotive Force and Circuits. 5.5.- Energy and Power in Electrical Circuits. 5.6.- Basic Theory of Electrical Conduction. 6.- MAGNETIC FIELD 6.1.- Magnetic Field. 6.2.- Motion of Charged Particles in a Magnetic Field. 6.3.- Magnetic Force on a Current-Carrying Conductor. 6.4.- Force and Torque on a Current Loop. 6.5.- Biot-Savart’s Law. 6.6.- Magnetic Field Lines and Magnetic Flux. 6.7.- Ampère’s Law. 7.- MAGNETIC FIELD IN MATTER 7.1.- Magnetic Substances and Magnetization Vector. 7.2.- Ampère’s Law in Magnetic Media. 7.3.- Magnetic Susceptibility and Permeability. 7.4.- Paramagnetism and Diamagnetism. 7.5.- Ferromagnetism. 8.- ELECTROMAGNETIC INDUCTION 8.1.- Induction Experiments. 8.2.- Faraday-Lenz's Law. 8.3.- Induced Electric Fields. 8.4.- Eddy Currents. 8.5.- Mutual Inductance. 8.6.- Self-Inductance and Inductors. 8.7.- Magnetic-Field Energy. 9.- THERMODYNAMIC SYSTEMS 9.1.- Classical Thermodynamics. 9.2.- Thermodynamic Systems and Classification. 9.3.- State Variables and State of a System. 9.4.- Equations of State. 9.5.- Thermodynamic Equilibrium. 9.6.- Change of State, Transformation or Process. 9.7.- Quasi-static Processes. 9.8.- State and Process Functions. 10.- TEMPERATURE AND HEAT 10.1.- Thermal Equilibrium, The Zeroth Law of Thermodynamics, and Temperature. 10.2.- Thermometers and Temperature Scales. 10.3.- Ideal Gas Thermometers and the Kelvin Scale. 10.4.- Heat. 10.5.- Calorimetry and Heat Capacities. 11.- THE FIRST LAW OF THERMODYNAMICS 11.1.- Work. 11.2.- Work Done During Volume Changes. 11.3.- Internal Energy. 11.4.- The First Law of Thermodynamics. 11.5.- Internal Energy of an Ideal Gas. 11.6.- Molar Heat Capacities of an Ideal Gas. 11.7.- Adiabatic, Isothermal, Isobaric and Isochoric Processes for an Ideal Gas. 11.8.- Enthalpy. 12.- THE SECOND LAW OF THERMODYNAMICS 12.1.- Directions of Thermodynamic Processes. 12.2.- Heat Engines, Refrigerators, and Heat Pumps. 12.3.- The Second Law of Thermodynamics: Clausius and Kelvin-Planck Statements. 12.4.- Carnot Engine. 12.5.- Carnot Theorems. 12.6.- Thermodynamic Temperature. 12.7.- Entropy. 12.8.- Increase of Entropy Principle. 12.9.- Entropy Change of an Ideal Gas. LABORATORY 1.- How to Use a Multimeter. Ohm’s Law. Direct Current. Circuit with Resistors. 2.- Linear and Non-Linear Conductors. 3.- Charge and Discharge of a Capacitor. 4.- Analysis of a Parallel Plate Capacitor with Dielectrics. 5.- Utilization of an Oscilloscope to Analyze Charge and Discharge Processes. 6.- Study of the Magnetic Field. Helmholtz Coils. Magnetic Moment. Hall Effect. 7.- Calorimetry. Water Equivalent of Calorimeter. Latent Heat of Fusion. 8.- Thermodynamics of the Ideal Gas. Heat Capacity Ratio. Adiabatic Work. LABORATORY: UNSTRUCTURED ACTIVITY (OPEN LAB) SESSIONS Unstructured activity (open lab) sessions that cover the topics of the above cited regular laboratory sessions. A practical problem will be assigned to each team. Then, under the teacher’s supervision, each team must analyse the problem, select a theoretical model and experimental means to obtain a solution.
 Universidade de Vigo            | Reitoría | Campus Universitario | C.P. 36.310 Vigo (Pontevedra) | España | Tlf: +34 986 812 000