Universida_{de}Vigo

Subject Guide 2023 / 2024

			S	ubject Guide 2023 / 2024
IDENTIFYIN				
	sign and testing Machine design			
Subject	and testing			
Code	V12G363V01602			
Study	Grado en			
programme	Ingeniería en			
programme	Tecnologías			
	Industriales			
Descriptors	ECTS Credits	Choose	Year	Quadmester
	6	Mandatory	3rd	2nd
Teaching	Spanish			
language	Galician			
	English			
Department				
Coordinator	González Baldonedo, Jacobo			
Lecturers	González Baldonedo, Jacobo			
	Segade Robleda, Abraham			
E-mail	jacobo.gonzalez.baldonedo@uvigo.es			
Web	http://moovi.uvigo.gal/			
General	This subject is intended to allow the students to apply			
description	the design of machines as well as the necessary know	vledge, comprehe	ension, and appl	ication of these concepts
	concerning to the field of Mechanical engineering.			c i i i i i i i
	It also provides the students with the most important			
	will know and apply analysis methods for the design of	of machines by ap	plying analytica	al methods or/and
	through the effective use of simulation software.			
	d Learning Results			
Code				
	owledge of basic and technological subjects that enabl	e students to lea	rn new methods	and theories, and to
	o new situations.			
	ility to solve problems through initiative, decision-maki		tical reasoning,	and to communicate and
	t knowledge, skills and abilities in the field of industrial			
	owledge to carry out measurements, calculations, asse	essments, apprais	als, surveys, sti	idies, reports, work plans
	er similar works.	datam (atam da rda		
	pacity for handling specifications, regulations and man			ations
	nowledge, understanding and ability to apply the legisl		ndustriai instali	ations.
	nowledge of the principles of the theory of machines ar			
	nowledge and abilities to calculate, design and test ma	chines.		
	blem solving. plication of knowledge.			
· · · · ·	ritical thinking.			
	pility to communicate with people not expert in the fiel	d		
DZU CIZUA	onicy to communicate with people not expert in the ner	u.		

D20 CT20 Ability to communicate with people not expert in the field.

Expected results from this subject	Training and Learning			
		Resul	its	
Knowledge of calculation methods applied in Mechanical design.	B3	C13	D2	
	B4	C26	D9	
	B5		D16	
Knowledge and design capabilities applied in mechanical power transmissions.	B6	C13	D2	
		C26	D9	
			D16	
			D20	

Knowledge of the fundamental laws applied in the study of machine elements.	B11	C13 C26	D2 D9 D16 D20
Calculation capabilities and analysis applied for different machine components.	B3 B11	C13 C26	D2 D9
			D16

Торіс		
Mechanical design	1. Design vs. static loads	
	2. Design vs. dynamic loads	
Power Transmissions	3. Introduction to power transmission systems	
	4. Gears (spur, bevel, and worm gears)	
	5. Axles and shafts	
Machine elements	6. Clutches and brakes	
	Bolted joints and power screws	
	8. Plain and ball bearings	

	Class hours	Hours outside the classroom	Total hours
Lecturing	23	19.5	42.5
Problem solving	9	30	39
Laboratory practical	18	45	63
Problem and/or exercise solving	2.5	0	2.5
Problem and/or exercise solving	0	3	3
*The information in the planning table is fo	r guidance only and does no	t take into account the hete	erogeneity of the students.

Methodologies	
	Description
Lecturing	Lectures about the topics of the subject
Problem solving	Discussion of exercises
Laboratory practical	Practical sessions including specific material and software tools.

Personalized assistance			
Methodologies	Description		
Lecturing	Group or individual tutorial sessions will be held during office hours to strengthen the acquired knowledge and to guide and assess the proposed works/papers		
Problem solving	Group or individual tutorials will be held during office hours to strengthen the acquired knowledge and to guide and assess the proposed works/papers.		
Laboratory practica	al Group or individual tutorials will be held during office hours to strengthen the acquired knowledge and to guide and assess the proposed works/papers.		

Assessment					
	Description	Qualification		aining	
			Lear	rning F	Results
Laboratory	The attendance and participation of students in laboratory practices will be	e 30		C13	D2
practical	valued. To complete the practice activities, a online questionnaire will			C26	D9
	need to be solved, covering aspects derived from the material taught in				D16
	the practice.				D20
Problem and/or	Several problem-solving tests will be formulated in Moovi, which will be	30	Β3	C13	D2
exercise solving	solved virtually. The scheduling of these tests will be done with sufficient		Β4	C26	D9
5	advance notice and in accordance with the current regulations.		B5		D16
			B6		
			B11		
Problem and/or	Students will be evaluated in a final written exam on the date established	40	Β3	C13	D2
exercise solving	in the exam calendar. This test will assess all the content developed in the		Β4	C26	D9
5	subject.		B5		D16
	,		B6		D20
			B11		

Other comments on the Evaluation

Continuous Assessment

1st Edition

The subject will be approved if a final grade of 5 or higher is obtained as follows:

- Attendance and successful completion of laboratory/computer room/equivalent classroom will have a maximum rating of 3 points towards the final grade. To add the practice grade, a minimum attendance of 7 sessions is required, and a minimum rating of 1 point out of 3 for the practice activities.
- The problem-solving tests in Moovi will have a maximum rating of 3 points towards the final grade. To have this section count, a minimum of 1 point out of 3 is required.
- The final exam will have a maximum rating of 4 points towards the final grade. A minimum of 1.5 out of 4 is established for this part of the evaluation system. If the minimum is not obtained in the final exam, the final grade will be the rating of this test weighted out of 10.

2nd Edition

In the second edition, the problem-solving tests can be retaken, so the final test will have a maximum rating of 7 points with a minimum score of 2.5 (out of 7). The grade for those who do not reach the minimum in this part will be the rating of the problem-solving test weighted out of 10 points.

Overall Evaluation

For those who opt for the global evaluation system following the mechanisms established by the School of Industrial Engineering, the evaluation system will consist of the following sections:

- Evaluation of the practical part: This test consists of solving a series of questions related to the content taught in the practical sessions of the subject. It will have a maximum rating of 3, and a minimum of 1 point must be obtained for it to count.
- Problem-solving and/or exercises test: The final exam will have a maximum rating of 7 points towards the final grade. A minimum of 2.5 out of 7 is established for this part of the evaluation system. If the minimum is not obtained in the final exam, the final grade will be the rating of this test weighted out of 10.

Ethical Commitment

It is expected that the student presents appropriate ethical behavior. In the event of detecting unethical behavior (copying, plagiarism, use of unauthorized electronic devices, among others), it will be considered that the student does not meet the necessary requirements to pass the subject. In this case, the overall grade for the current academic year will be a fail (0.0).

The use of any electronic devices during assessment tests will not be allowed unless expressly authorized. The introduction of an unauthorized electronic device in the exam room will be considered grounds for not passing the subject in the current academic year, and the overall grade will be a fail (0.0).

*A numerical grading system from 0 to 10 points will be used according to the current legislation (RD 1125/2003 of September 5, BOE of September 18).

Sources of information Basic Bibliography	
Norton, R., Machine Design. An Integrated Approach, Pearson, 2012	
Shigley, J.E, Mechanical Engineering Design, 9ª edición, Mc Graw Hill, 2012	
Norton, R., Diseño de Máquinas. Un Enfoque Integrado, Pearson, 2012	
Shigley, J.E, Diseño de en Ingeniería Mecánica , 9ª edición, Mc Graw Hill, 2012	
Complementary Bibliography	
Mott, Robert L., Machine Elements in Mechanical Design, Pearson, 2006	
Lombard, M, Solidworks 2013 Bible, Wiley, 2013	
Hamrock, Bernard J, et al., Fundamental Machine Elements, Mc Graw Hill, 2000	
Mott, Robert L., Diseño de elementos de máquinas, Pearson, 2006	
Hamrock, Bernard J, et al., Elementos de Máquinas, Mc Graw Hill, 2000	

Recommendations

Materials science and technology/V12G360V01301 Mechanics of materials/V12G360V01404 Mechanism and machine theory/V12G360V01303