Universida_{de}Vigo

Subject Guide 2020 / 2021

IDENTIFYIN				
Chemistry:	Chemistry			
Subject	Chemistry:			
	Chemistry			
Code	V12G380V01205			
Study	Degree in			
programme	Mechanical			
	Engineering			
Descriptors	ECTS Credits	Choose	Year	Quadmester
	6	Basic education	1st	2nd
Teaching	Spanish			
language	Galician			
_	English			

Department

Coordinator	Cruz Freiro, José Manuel			
Lecturers	Álvarez Álvarez, María Salomé			
	Bolaño García, Sandra			
	Bravo Bernárdez, Jorge			
	Canosa Saa, Jose Manuel			
	Cruz Freire, José Manuel			
	Lorenzo Fernández, Paula			
	Mandado Alonso, Marcos			
	Meijide Fernández, Jéssica			
	Moldes Moreira, Diego			
	Mosquera Castro, Ricardo Antonio			
	Nóvoa Rodríguez, Ramón			
	Rey Losada, Francisco Jesús			
	Rodríguez Rodríguez, Ana María			
	Rosales Villanueva, Emilio			
	Souto Salgado, José Antonio			
E-mail	jmcruz@uvigo.es			
Web	http://faitic.uvigo.es/			
General	This is a basic subject, common for all levels of the industrial fields studies. At the end of the course the			
description	students will have a basic knowledge about the principles of general chemistry, organic chemistry and			
	inorganic chemistry, and its application to Industry. This knowledge will be further applied and expanded in			
	other areas of the studies.			
-				

Con	Competencies			
Cod	e			
B3	CG3 Knowledge in basic and technological subjects that will enable students to learn new methods and theories, and			
	provide them the versatility to adapt to new situations.			
C4	CE4 Ability to understand and apply the basic knowledge of general chemistry, organic chemistry and inorganic			
	chemistry, and their applications in engineering.			
D2	CT2 Problems resolution.			
D10	CT10 Self learning and work.			
D17	CT17 Working as a team.			

Learning outcomes

Expected results from this subject

Training and Learning Results Knowing the chemical bases of industrial technologies. Specifically, the student will gain basic B3 C4 knowledge of general, organic and inorganic chemistry and their applications in engineering. This will allow the student to apply the basic concepts and fundamental laws of chemistry. Due to theoretical-practical training, the student will be able to effectively carry out lab experiments and to solve basic chemistry exercises.

Contents	
Торіс	
1. Atomic theory and chemical bonding	1.1 Atomic theory:Particles of the atom: Electron, proton et neutron. Characteristics of the atom: Atomic number and Atomic mass. Isotopes. Stability of the nucleus:
	Radioactivity (natural and artificial). Evolution of the atomic theory. 1.2. Chemical bonding:
	Definition. Intramolecular bonding: Covalent bonding and ionic bonding. Polyatomic molecules: hybridization and delocalization of electrons. Intermolecular bonding: Types of intermolecular forces.
2. States of aggregation: Solids, gases, pure liquids and solutions	2.1. Solid state: Introduction. Classification of solids: amorphous solids, molecular crystals and liquid crystals, Covalent crystals and ionic crystals.
	2.2. Gaseous state:Characteristics of the gas phase. Ideal gases: Equation of state. Real gases: Equation of state. Properties of gases.2.3. Liquid state:
	Characteristics of the liquid phase: physical properties (density, surface tension, viscosity). Changes of state. Phase diagram. Solutions: colligative properties
3. Thermochemistry	3.1. Heat of reaction:
-	Definition of Enthalpy and Internal Energy. Enthalpy of reaction.
	Temperature Dependence of Enthalpy Changes. Enthalpy of formation.
	Determination of the reaction enthalpy: direct method. State Function and Hess's Law.
	3.2. Entropy: Definition. Calculus.
	3.3. Free energy: Definition. Calculus. The Criterion of Evolution.
4.Chemical equilibrium: in gas phase, acid-base-	
base, redox, solubility	Concept of Equilibrium. Equilibrium Constant. Types of equilibrium. The Le Chatelier Principe.
	4.2. Acid-base Equilibrium: Definition of acid and base. Autoionization of water. Ionic Product. Concept
	of pH and pOH. Strength of acids and bases: Polyprotic acids. Amphoters. pH calculation. Acid-base titration. Buffer solutions.
	4.3. Redox equilibrium: Concept of oxidation, reduction, oxidising agent, reducing agent. Balance of redox reactions in acid and alkaline media. Redox titration.
	Electrochemical cells: basic concepts and redox potential.
	Thermodynamics of electrochemical reactions: Gibbs Energy and cell Potential. Nernst Equation. Faraday[]s Laws.
	4.4 Solubility equilibrium:
	Soluble salts: Hydrolysis. Sparingly soluble salts: solubility and solubility product. Factors affecting solubility. Fractional Precipitation. Complex
	Salts: Definition, properties, dissociation and importance.
5. Chemical kinetics	5.1. Basic Concepts:
	Reaction Rate. Reaction Order. Kinetic Constant. Rate Equation.
	5.2. Determination of the Rate Equation:
	Initial rate method. Integrated Rate Laws.
6. Basic principles of Organic Chemistry	5.3. Factors affecting the Reaction Rate.6.1. Fundamentals of Organic formulation and functional groups:
6. Basic principles of Organic Chemistry	6.1.1. ^o Structure of the organic compounds: Alkanes, alkenes and alkynes. Aromatic Hydrocarbons.
	6.1.2. Alcohols and phenols.
	6.1.3. Ethers.
	6.1.4. Aldehydes and ketones.
	6.1.5. Esters.
	6.1.6. Carboxylic acids and derivatives.
	6.1.7. Amines and nitro-compounds.

D2 D10

D17

7. Basic principles of Inorganic Chemistry.	7.1. Metallurgy and the Chemistry of Metals:
	Abundance of metals. Nature of the metallic bond, properties. Theory of
	the Conduction Band: conducting materials, semiconductors and
	superconductors. Metallurgical processes: iron and steel.
	7.2. Non-metallic elements and their compounds:
	General properties. Hydrogen. Carbon. Nitrogen and phosphorous. Oxygen
	and sulphur. Halogens.
O Applied Electrophensistry	
8. Applied Electrochemistry	8.1. Applications of the Nernst equation: Determination of pH, Equilibrium
	constant, solubility product.
	8.2. Electrochemical cells: types of cells. Concentration Cells. Electric
	Conductivity in electrolytes. Electrolysis Cells.
	8.3. Industrial Processes of electrolysis: electrodeposition (electroplating),
	electrometallurgy, electrolysis chlorine Caustic soda. Fuel cells.
9. Corrosion and treatment of Surfaces	9.1. Basic principles of Corrosion: the corrosión cell.
	9.2. Corrosion of metals.
	9.3. Corrosion rate.
	9.4. Types of Corrosion.
	9.5. Protection against Corrosion:
	Design considerations for Corrosion protection. Cathodic protection:
	sacrificial anodes and impressed current. Organic Coatings. Metallic
	coatings.
10. Electrochemical sensors	10.1. Fundamentals.
	10.1. Tundamentals. 10.2. Typology and function.
	10.2. Typology and function. 10.3. Conductivity Sensors.
	•
	10.4. Potentiometric Sensors.
	10.5. Ion Selective electrodes. pH sensors.
	10.6. Sensors for gases in solution.
	10.7. Enzyme-based sensors: Biosensors.
	10.8. Amperometric and voltammetric sensors.
	10.9. Applications of sensors: medicine, industry, environment.
11. Petroleum and derivatives. Petrochemistry	11.1. Physicochemical characteristics of petroleum (oil).
	11.2. Physicochemical characteristics of natural gas.
	11.3. Conditioning and uses of natural gas.
	11.4. Fractioning of oil.
	11.5. Cracking of hydrocarbons. Reforming, isomerisation, oligomerisation,
	alkylation and esterification of hydrocarbons.
	11.6. Petrochemical processes of BTX; olefins and derivatives; methanol
	and derivatives.
	11.7. Treatment of sulphurous compounds and refining units.
12 Carbon: Carbochamistry	(12.1. Formation of carbon.
12. Carbon: Carbochemistry	
	12.2. Types of carbons and their constitution.
	12.3. Technological uses of carbon.
	12.4. Pyrogenation of carbon.
	12.5. Hyidrogenation of carbon.
	12.6. Direct liquefaction of carbon. Gasification.

Planning			
	Class hours	Hours outside the classroom	Total hours
Lecturing	30	45	75
Problem solving	7.5	12	19.5
Laboratory practical	10	7.5	17.5
Autonomous problem solving	0	25.5	25.5
Objective questions exam	1	0	1
Problem and/or exercise solving	3	0	3
Report of practices, practicum and external	practices 1	7.5	8.5
*The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.			

Methodologies	
	Description
Lecturing	Presentation by the faculty member of the theoretical content of the subject using audiovisual media.
Problem solving	Activity in which problems and/or exercises related to the subject will be formulated. Students should develop appropriate solutions by applying formulas or algorithms to manage the available information and interpret the results.

Laboratory practical	Activities of application of the theoretical background to specific situations, aimed to the acquisition of basic skills related to the subject. Will be developed in the laboratories or computer rooms of the center in which subject is given. Those rooms will be equipped with the necessary specialized equipment.
Autonomous problem solving	Activity in which the teacher formulates problems and/or exercises related to the subject, and the student must develop the analysis and resolution in an autonomous way.

Personalized assistance		
Methodologies	Description	
Lecturing	Any doubt related with the contents given in the mater sessions will be clarified.	
Problem solving	Any doubt related with the problems resolved in the seminars of problems will be answered.	
Laboratory practical Any doubt related with the laboratory practices will be answered.		

Assessment			
	Description	Qualification	Training an Learning Results
Autonomous problem solving	Students must solve independently, and periodically submit problems or exercises formulated by the faculty member. The results and the procedure followed in the execution will be evaluated. According to current legislation, the final grade will be numeric and between 0 and 10.	10	B3 C4 D2 D10
Objective questions exam	The purpose of these tests, which will be carried out in the date of the official announcement of examinations, is to assess the level of theoretical knowledge acquired by students in classroom sessions. Written tests are multiple choices, multiple responses, in which students can achieve a numerical score between 0 and 10, according to current legislation.	40	B3 C4 D10
Problem and/or exercise solving	The evaluation of the knowledge gained by students in seminars will be through a written exam, in the official announcement of examinations, in which the student must solve 4 or 5 problems related to the subject under study. The exam will be graded according to the current legislation, with a numerical final grade between 0 and 10.	40	B3 C4 D2 D10
Report of practices, practicum and external practices	After each laboratory session, the student should answer an oral question or prepare a detailed report including aspects such as objective and theoretical foundations, procedure followed, materials used, results and interpretation. The aspects considered in the evaluation are the content of the report, the understanding of the work done, the ability of summarising, quality of presentation, and the personal contribution. The final score, between 0 and 10, will be the average of the marks obtained in the various reports made and/or writing or oral test that could be done for each practice.	10	C4 D17

Other comments on the Evaluation

The final exam, consisting of two different parts, a test-type quiz for theory content and a set of exercises, will be considered for the final score weighting only when they were rated greater than or equal to 4. Although the average score could be equal or greater than 5, if the qualification of any of the parts of the final exam be lower than 4, the final score will be the lowest mark obtained in the final exam (which is the one that does not permit to calculate the average mark). The attendance to any lab session or any seminar test means that the student is being evaluated and therefore a qualification of [not presented]] is no longer possible.

The marks of continuous evaluation (seminars test and lab experiments) and the marks of final exam higher than 5 (test quiz or exercises) obtained in the first call will be kept for the second call.

Those students that obtain officially the renunciation to the continuous evaluation will be evaluated by the final exam, to be held in the official date for the two calls. The final qualification will consist of a 50% of exercises and a 50% of theory (test-type) exam. A rate equal to or greater than 4 in both parts is necessary in order to pass the exam.

Ethical commitment:

The student is expected to present an adequate ethical behavior. If an unethical behavior is detected (copying, plagiarism, unauthorized use of electronic devices, and others) it is considered that the student does not meet the requirements for passing the subject. In this case, the final grade in the current academic year will be FAIL (0.0 points).

The use of electronic devices during the assessment tests will be not permitted. Introducing an unauthorized electronic device into the examination room, will be considered as a FAIL (0.0 points) in the current academic year.

Sources of information
Basic Bibliography
Petrucci, R. H., Herring, F.G., Madura, J.D., Bissonnette, C., Química General, Ed. Prentice-Hall,
Chang, R., Química , Ed. McGraw Hill,
Reboiras, M.D, Química. La ciencia básica , Ed. Thomsom,
Reboiras, M.D., Problemas resueltos de de Química. La ciencia básica, Ed. Thomson,
Fernández, M. R. y col., 1000 Problemas de Química General, Ed. Everest,
Complementary Bibliography
Atkins, P. y Jones, L, Principios de Química. Los caminos del descubrimiento, Ed. Interamericana,
Herranz Agustin, C, Química para la ingeniería , Ediciones UPC,
McMurry, J.E. y Fay, R.C, Química General , Ed. Pearson,
Herranz Santos, M.J. y Pérez Pérez M.L., Nomenclatura de Química Orgánica, Ed. Síntesis,
Quiñoá, E. y Riguera, R., Nomenclatura y representación de los compuestos orgánicos : una guía de estudio y
autoevaluación, Ed. McGraw Hill,
Soto Cámara, J. L., Química Orgánica I: Conceptos Básicos, Ed. Síntesis,
Soto Cámara, J. L., Química Orgánica II: Hidrocarburos y Derivados Halogenados, Ed. Síntesis,
Ballester, A., Verdeja, L. y Sancho, J., Metalurgia Extractiva I: Fundamentos, Ed. Síntesis,
Sancho, J. y col., Metalurgia Extractiva II: Procesos de obtención, Ed. Síntesis,
Rayner-Canham, G., Química Inorgánica Descriptiva, Ed. Prentice-Hall,
Alegret, M. y Arben Merckoci, Sensores electroquímicos, Ediciones UAB,
Cooper, J. y Cass, T., Biosensors , Oxford University Press,
Calleja, G. y col., Introducción a la Ingeniería Química, Ed. Síntesis,
Otero Huerta, E., Corrosión y Degradación de Materiales, Ed. Síntesis,
Coueret, F., Introducción a la ingeniería electroquímica, Ed. Reverté,
Pingarrón, J.M. y Sánchez Batanero, P., Química Electroanalítica. Fundamentos y Aplicaciones, Ed. Síntesis,
Ramos Carpio, M. A., Refino de Petróleo, Gas Natural y Petroquímica, Ediciones UPM,
Vian Ortuño, A., Introducción a la Química Industrial, Ed. Reverté,
Quiñoa ,E., Cuestiones y ejercicios de química orgánica: una guía de estudio y autoevaluación, Ed. McGraw Hill,
Llorens Molina, J.A., Ejercicios para la introducción a la Química Orgánica, Ed Tébar,
Herrero Villén, M.A., Atienza Boronat, J.A., Nogera Murray, P. y Tortajada Genaro, L.A., La Química en problemas. Un
enfoque práctico, Ediciones UPV,
Sánchez Coronilla, A., Resolución de Problemas de Química, Ed. Universidad de Sevilla,
Brown, L.S., Holme, T.A., Chemistry for engineering students, Brooks/Cole Cengage Learning, 3rd ed.,

Recommendations

Subjects that it is recommended to have taken before

(*)Física: Física I/V12G350V01102 (*)Matemáticas: Álxebra e estatística/V12G350V01103 (*)Matemáticas: Cálculo I/V12G350V01104

Contingency plan

Description

=== EXCEPTIONAL PLANNING ===

=== EXCEPTIONAL MEASURES SCHEDULED ===

Given the uncertain and unpredictable evolution of the health alert caused by COVID-19, the University of Vigo establishes extraordinary planning that will be activated at the time that the administrations and the institution itself determine it based on safety, health and responsibility criteria and guaranteeing teaching in a non-classroom or partially classroom setting. These already planned measures guarantee, at the required time, the development of teaching in a more agile and effective way, as it is known in advance by the students and teachers through the standardized tool and institutionalized teaching guides or syllabus.

=== ADAPTATION OF THE METHODOLOGIES ===

All the teaching methodologies explained in the syllabus are maintained, but the lectures will be performed by means of the

Remote Campus of the University of Vigo.

If the lab practices could not be developed in person, the theoretical content will be explained by Remote Campus. Moreover, some videos recorded by the teachers will be provided, so that the student could see the procedure that should be done. Then, the students will be provided with experimental data, so that they can complete the corresponding lab report.

Office hours could be carried out in different modalities: in person, by email or through the virtual offices at the Remote Campus of the University of Vigo.

=== ADAPTATION OF THE EVALUATION ===

Modification of the evaluation tests:

Autonomous problem solving: the student must periodically deliver the problems or exercises formulated by the teacher; this topic increase their weight in the grade from 10% to 30%.

Problem solving and / or exercises: The final problem exam, to be held on the official dates set by the EEI, reduces its weight in the final grade, from 40% to 20%. The test will be graded with a final numerical grade between 0 and 10.

Multiple choice test: The final theory exam will be carried out on the official dates set by the EEI; it will be a multiple-choice test; it reduces its weight in the final grade from 40% to 20%. The test will be graded with a final numerical grade between 0 and 10.

Lab Practices report: The qualification of the laboratory practices maintains a weight of 10% in the final grade. Autonomous resolution of theory questionnaires: These new continuous assessment tests are added; the student must carry out theory multiple-choice tests, which will have a weight of 20% in the final grade.

Considering that some students could be unable to do some test of continuous assessment, two possible procedures of qualification will be considered. The selected one will be the most favorable for each student in the two calls. The two procedures of weighing are:

a) Final score = theory exam x 0.2 + problem exam x 0.2 + continuous evaluation problems x 0.3 + continuous evaluation theory x 0.2 + lab practice x 0.1

b) Final score = theory exam x 0.5 + problem exam x 0.5

A grade greater than or equal to 4.0 in both the final theory exam and in the problem exam will be required in order to pass the subject in both weighting systems.

For the second call, the continuous evaluation grades obtained throughout the course are maintained, as well as the scores equal to or greater than 5.0 of the multiple-choice tests or problems exam obtained in the first call.

Those students who officially obtain the renounce of continuous assessment will do, on the official exam date of the two calls, a problem exam and a theory multiple-choice test, which will be weighted by 50% each of them in their grade. A grade greater than or equal to 4.0 in each exam will be a requirement.