Universida_{de}Vigo

Subject Guide 2021 / 2022

IDENTIFYIN					
Biostatistic					
Subject	Biostatistics				
Code	V12G420V01601				
Study	Grado en				
programme	Ingeniería				
	Biomédica				
Descriptors	ECTS Credits	,	Choose	Year	Quadmester
•	6	,	Mandatory	3rd	2nd
Teaching	Galician				
language					
Department		'			·
Coordinator	Pardo Fernández, Juan Carlos				
Lecturers	Pardo Fernández, Juan Carlos				
E-mail	juancp@uvigo.es				
Web	http://moovi.uvigo.gal				
General	In this subject we will study st	atistical models and n	nethods of utility in	biomedicine	
description	•		•		

Code

- B3 CG3 Knowledge in basic and technological subjects that will enable students to learn new methods and theories, and provide them the versatility to adapt to new situations.
- C24 CE24 Ability to know how to use statistics to solve biomedical engineering problems and / or establish models.
- D1 CT1 Analysis and synthesis.
- D2 CT2 Problems resolution.
- D5 CT5 Information Management.
- D6 CT6 Application of computer science in the field of study.
- D9 CT9 Apply knowledge.
- D12 CT12 Research skills.

Learning outcomes			
Expected results from this subject Training and			_
		Res	ults
Understanding of concepts and techniques of statistical inference.	B3	C24	D1
			D2
Capacity to use statistical models for understanding practical situations in biomedicine.			D5
			D6
Capacity to design and interpret statistical studies in biomedicine.			D9
			D12
Capacity to handle statistical software for data analysis.			

Contents	
Topic	
Review of descriptive techniques and R software.	Graphs, tables, summary measures. Examples of biostatistical studies. Basic handling of R software.
Probability models of in biostatistics.	Review of probabilistic concepts: density function, distribution function and survival function. Relevant models for random variables in biostatistics. Important concepts in biomedicine: prevalence, incidence, sensitivity, specificity, ROC curve.
Inferential methods.	General review of the main concepts in statistical inference: estimation, confidence intervals and hypothesis testing. Statistical inference in several populations: comparison of means, ANOVA, comparison of variances.
Contingency tables.	Joint, marginal and conditional distributions. Measures of association. Test of independence. Tables 2x2. Relative risk and odds-ratio.

Regression.	Multiple linear regression model. Estimation and analysis of the model. Inference about regression models. Non linear models. Logistic regression.
Multivariate techniques in biostatistics.	Principal component analysis. Discriminant analysis. Cluster analysis. Examples of application in biomedicine.
Introduction to the experimental design.	Basic principles of experimental design. Examples of experimental designs in biomedicine

Planning			
	Class hours	Hours outside the classroom	Total hours
Lecturing	20	30	50
Problem solving	12.5	25	37.5
Laboratory practical	18	22	40
Autonomous problem solving	0	20	20
Essay questions exam	2.5	0	2.5

^{*}The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies	
	Description
Lecturing	The lecturer will explain the contents of the course.
Problem solving	Problems and exercises will be solved during the classes. Students will also solve similar problems and exercises.
Laboratory practical	Computer tools will be used to solve problems related to the contents of the course.
Autonomous problem solving	Student will have to solve problems and exercises by their own.

Personalized assistance	
Methodologies Description	
Laboratory practical	
Lecturing	
Problem solving	
Autonomous problem solving	

Assessment					
	Description	Qualification	Trair	Training and Learning Results	
Problem solving	Several follow-up tests will be conducted throughout the course.	40	В3	C24	D1 D2 D5 D6 D9 D12
Essay questions examFinal exam about the contents of the course.		60	В3	C24	D1 D2 D5 D6 D9

Other comments on the Evaluation

Ethical commitment: Students are expected to commit themselves to an adequate and ethical behaviour. Students showing unethical behaviours (exam cheating, plagiarism, unauthorized use of electronic devices, etc.) will be rated with the minimum grade (0.0) in the current academic year.

As a general rule, the use of any electronic device for the assessment tests is not allowed unless explicitly authorized.

Sources of information
Basic Bibliography
Dalgaard, P., Introductory statistics with R, Springer, 2008
Devore, J. L., Probabilidad y estadística para ingeniería y ciencias. , Cengage Learning, 2012
Everitt, B.S.; Hothorn, T., An introduction to applied multivariate analysis with R, Springer, 2013
Sheather, S.J., A modern approach to regression with R, Springer, 2009

Vidakovic, B., Engineering biostatistics, Wiley, 2017

Zar, J.H., **Biostatistical analysis**, Prentice Hall, 1999

Complementary Bibliography

Devore, J. L., Probability and statistics for engineering and sciences, Thomson-Brooks/Cole, 2004

Lattin, J.; Carroll, J.D.; Green, P.E., Analyzing multivariate data, Thomson, 2003

Pepe, M.S., **The statistical evaluation of medical tests for classification and prediction**, Oxford University Press, 2004

Wasserman, L., All of statistics. A concise course in statistical inference, Springer, 2004

Recommendations

Subjects that continue the syllabus

Mathematics: algebra and statistics/V12G420V01103

Subjects that it is recommended to have taken before

Computer Science: computer science for engineering/V12G420V01203

Mathematics: calculus I/V12G420V01104

Mathematics: calculus II and differential equations/V12G420V01204

Contingency plan

Description

EXCEPTIONAL MEASURES SCHEDULED

In front of the uncertain and unpredictable evolution of the sanitary alert caused by the *COVID-19, the University of Vigo establishes an extraordinary planning that will activate in the moment in that the administrations and the own institution determine it attending to criteria of security, health and responsibility, and guaranteeing the teaching in a no face-to-face stage or partially face-to-face. These already scheduled measures guarantee, in the moment that was prescriptive, the development of the teaching of a more agile and effective way when being known in advance (or with a wide *antelación) by the students and the *profesorado through the tool normalised and institutionalised of the educational guides *DOCNET.

ADAPTATION OF THE METHODOLOGIES

educational Methodologies that keep: all. In case that the teaching can not carry out *presencialmente, will employ the tools of Remote Campus.

Educational methodologies that modify: any.

Mechanism no face-to-face of attention to the students (*tutorías): through the post-and and of the tools of Remote Campus.

Modifications (if it proceeds) of the contents to give: any.

Additional bibliography to facilitate to car-learning: the professor will facilitate the necessary bibliographic material, so much of own preparation as through the resources of the university Library.

Other modifications: they do not proceed.

ADAPTATION OF THE EVALUATION

keep the criteria of evaluation adapting the realisation of the proofs, in the case to be necessary and by indication in Resolution *Rectoral, to the telematic means put the disposal of the *profesorado.