Universida_{de}Vigo

Guía Materia 2023 / 2024

DATOS IDENT	TIFICATIVOS			
Transmisión	de calor			
Asignatura	Transmisión de			_
	calor			
Código	V09G311V01207			
Titulacion	Grado en	,		
	Ingeniería de los			
	Recursos Mineros			
	y Energéticos			
Descriptores	Creditos ECTS	Seleccione	Curso	Cuatrimestre
	6	OB	2	2c
Lengua	Castellano			
Impartición				
	Ingeniería mecánica, máquinas y motores tér	rmicos y fluidos		
Coordinador/a	Fernández Seara, Jose			
Profesorado	Fernández Seara, Jose			
Correo-e	jseara@uvigo.es			_
Web	http://moovi.uvigo.gal/			
Descripción				
general	Profundizar en el conocimiento de los procesor transferencia de calor.	os y equipos industriales	más relevante	s que impliquen

Resultados de Formación y Aprendizaje

Código

- A1 Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.
- A2 Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.
- A3 Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.
- A4 Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.
- A5 Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.
- B1 Capacitación científico-técnica para el ejercicio de la profesión de Ingeniero Técnico de Minas y conocimiento de las funciones de asesoría, análisis, diseño, cálculo, proyecto, construcción, mantenimiento, conservación y explotación.
- B2 Comprensión de los múltiples condicionamientos de carácter técnico y legal que se plantean en el desarrollo, en el ámbito de la ingeniería de minas, que tengan por objeto, de acuerdo con los conocimientos adquiridos según lo establecido en el apartado 5 de la orden CIN/306/2009, la prospección e investigación geológica-minera, las explotaciones de todo tipo de recursos geológicos, incluidas las aguas subterráneas, las obras subterráneas, los almacenamientos subterráneos, las plantas de tratamiento y beneficio, las plantas energéticas, las plantas mineralúrgicas y siderúrgicas, las plantas de materiales para la construcción, las plantas de carboquímica, petroquímica y gas, las plantas de tratamientos de residuos y efluentes y las fábricas de explosivos y capacidad para emplear métodos contrastados y tecnologías acreditadas, con la finalidad de conseguir la mayor eficacia dentro del respeto por el Medio Ambiente y la protección de la seguridad y salud de los trabajadores y usuarios de las mismas.
- B3 Capacidad para diseñar, redactar y planificar proyectos parciales o específicos de las unidades definidas en el apartado anterior, tales como instalaciones mecánicas y eléctricas y con su mantenimiento, redes de transporte de energía, instalaciones de transporte y almacenamiento para materiales sólidos, líquidos o gaseosos, escombreras, balsas o presas, sostenimiento y cimentación, demolición, restauración, voladuras y logística de explosivos.
- B4 Capacidad para diseñar, planificar, operar, inspeccionar, firmar y dirigir proyectos, plantas o instalaciones, en su ámbito.

- C10 Comprensión y dominio de los conceptos básicos sobre las leyes generales de la mecánica y de la termodinámica y su aplicación para la resolución de los problemas propios de la ingeniería. Transferencia de calor y materia y máquinas térmicas.
- D1 Capacidad de interrelacionar todos los conocimientos adquiridos, interpretándolos como componentes de un cuerpo del saber con una estructura clara y una fuerte coherencia interna.
- D2 Capacidad de desarrollar un proyecto completo en cualquier campo de esta ingeniería, combinando de forma adecuada los conocimientos adquiridos, accediendo a las fuentes de información necesarias, realizando las consultas precisas e integrándose en equipos de trabajo interdisciplinar.
- D3 Proponer y desarrollar soluciones prácticas, utilizando los conocimientos teóricos, a fenómenos y situacionesproblema de la realidad cotidiana propios de la ingeniería, desarrollando las estrategias adecuadas.
- D4 Favorecer el trabajo cooperativo, las capacidades de comunicación, organización, planificación y aceptación de responsabilidades en un ambiente de trabajo multilingüe y multidisciplinar, que favorezca la educación para la igualdad, para la paz y para el respeto de los derechos fundamentales.
- D7 Capacidad para organizar, interpretar, asimilar, elaborar y gestionar toda la información necesaria para desarrollar su labor, manejando las herramientas informáticas, matemáticas, físicas, etc., necesarias para ello.
- D8 Concebir la ingeniería en un marco de desarrollo sostenible con sensibilidad hacia temas medioambientales.

Resultados previstos en la materia					
Resultados previstos en la materia		Resultados de Formación y Aprendizaje			
		уА		-	
Identificación de los modos de transferencia de calor así como el planteamiento y resolución de	A2		C10	D1	
problemas de ingeniería relacionados.				D3	
				D7	
Conocer el proceso experimental utilizado cuando se trabaja con transferencia de energía.	A1	B2	C10	D3	
	A2	В3		D4	
	А3			D7	
	A5			D8	
Capacidad para conocer y entender los principios y fundamentos de la transmisión de calor.	A1	B1	C10	D1	
	A2	В3		D2	
	А3	В4		D3	
	A5			D4	
				D7	
Capacidad para conocer, entender y utilizar los principios y fundamentos de la termodinámica	A1	B1	C10	D1	
aplicada.	A2			D2	
	А3				
	A5				
Calcular instalaciones de transferencia de calor.	A1	B1	C10	D1	
	A2	В2		D2	
	А3	В3		D3	
	A5	В4		D8	
Dominar las técnicas actuales disponibles para el análisis de la ingeniería térmica	A2	B1	C10	D1	
	А3	В3		D2	
	A4	В4		D3	
	A5			D7	
				D8	

Contenidos	
Tema	
1. INTRODUCCIÓN A LA TRANSMISIÓN DE CALOR	1.1. La transmisión de calor y la termodinámica
	1.2. Mecanismos de transmisión del calor
	1.3. Complejidad del fenómeno de transmisión del calor
	1.4. Importancia del estudio de la transmisión de calor. Aplicaciones
2. CONCEPTOS Y PRINCIPIOS FUNDAMENTALES	2.1. Campo de temperaturas, líneas y superficies isotermas
EN CONDUCCIÓN	2.2. Gradiente de temperatura
	2.3. Calor, flujo de calor y densidad de flujo de calor
	2.4. Ley de Fourier
	2.5. Ecuación general de transmisión de calor por conducción
	2.6. Condiciones de unicidad: geométricas, físicas, iniciales, de contorno
	2.7. Proceso general de solución de los problemas en conducción
	2.8. Conductividad térmica y mecanismos de conducción
	2.9. Conductividad térmica en sólidos, líquidos y gases
	2.10. Difusividad térmica

3. CONDUCCIÓN EN RÉGIMEN PERMANENTE UNIDIRECCIONAL	 3.1. Pared plana infinita 3.2. Pared plana compuesta 3.3 Cilindro infinito 3.4. Cilindro compuesto 3.5. Espesor crítico de aislamiento en tuberías 3.6. Esfera 3.7. Esfera compuesta 3.8. Espesor crítico de aislamiento en una esfera 3.9. Ecuación general para casos particulares 3.10 Resistencia térmica de contacto 3.11. Analogía termo-eléctrica.
4. SUPERFICIES ADICIONALES O ALETAS	 4.1. Introducción 4.2. Tipos de aletas 4.3. Ecuación general de las aletas y condiciones de contorno 4.4. Aletas de sección transversal constante 4.5. Flujo de calor disipado por una aleta 4.6. Aletas de sección transversal variable 4.7. Eficiencia de las aletas 4.8. Eficiencia de una superficie aleteada 4.9. Flujo de calor disipado por una superficie aleteada 4.10. Efecto de la colocación de aletas rectas
5. CONDUCCIÓN EN RÉGIMEN PERMANENTE MULTIDIRECCIONAL	5.1. Régimen permanente en más de una dirección5.2. Placas rectangulares5.3. Principio de superposición5.4. Cilindro de longitud finita5.5 Factor de forma
6. CONDUCCIÓN EN RÉGIMEN TRANSITORIO	 6.1. Régimen transitorio y parámetros adimensionales 6.2. Conducción transitoria en una placa infinita 6.3. Conducción transitoria en cilindros infinitos 6.4. Conducción en régimen transitorio en más de una dirección. Método del producto de soluciones 6.5. Método de la capacidad térmica global
7. MÉTODOS NUMÉRICOS	7.1. Introducción 7.2. Método de diferencias finitas. Discretización del dominio y del tiempo 7.3. Método de las diferencias finitas en régimen permanente 7.4. Método de las diferencias finitas en régimen transitorio
8. CONCEPTOS Y PRINCIPIOS FUNDAMENTALES EN CONVECCIÓN	8.1. Introducción 8.2. Tipos de convección 8.3. Planteamiento general del problema de convección 8.4. Conceptos básicos 8.5. Análisis dimensional, magnitudes fundamentales y derivadas 8.6. Teorema PI de Buckingham. Método de los Índices 8.7. Parámetros adimensionales. 8.8. Coeficientes de convección: local, medio
9. CONVECCIÓN FORZADA Y CONVECCIÓN NATURAL	9.1. Parámetros adimensionales en convección forzada 9.2. Temperatura de cálculo de las propiedades del fluido 9.3. Convección forzada externa 9.4. Convección forzada interna 9.5. Parámetros adimensionales en convección natural 9.6. Convección natural en espacios ilimitados 9.7. Convección natural en espacios limitados 9.8. Convección mixta
10. CONVECCIÓN CON CAMBIO DE FASE. CONDENSACIÓN Y EBULLICIÓN	10.1. Introducción 10.2. Condensación. Tipos 10.3. Condensación en película sobre una pared vertical plana 10.4. Condensación sobre tubos horizontales 10.5. Condensación sobre un haz de tubos 10.6. Condensación sobre superficies y tubos inclinados 10.7. Condensación sobre esferas 10.8. Condensación en convección forzada 10.9. Ebullición. Tipos 10.10. Ebullición en recipientes. 10.11. Ebullición en convección forzada

11. INTERCAMBIADORES DE CALOR	11.1. Introducción 11.2. Clasificación general 11.3. Principales tipos de intercambiadores 11.4. Tipos de análisis de intercambiadores 11.5. Coeficiente global de transmisión de calor 11.6. Resistencia térmica controlante 11.7. Distribución de temperaturas en los intercambiadores 11.8. Cálculo del flujo de calor intercambiado 11.9. Método de la diferencia de temperaturas
	11.10. Método de la eficiencia-número de unidades de transferencia (Ef-
	N.T.U.)
	11.11. Comparación entre los métodos DTLM y Ef-N.T.U. Planteamiento general de los problemas
	11.12. Cálculo del coeficiente global de transmisión de calor
	11.13. Método general de cálculo de un intercambiador por procesos
12. CONCEPTOS Y PRINCIPIOS FUNDAMENTALES	iterativos 12.1. Introducción
EN RADIACIÓN	12.1. Introducción 12.2. Conceptos básicos en el proceso de intercambio de energía radiante:
EN TO UNICION	ley de Prevost, intensidad de radiación, emitancia, radiosidad e irradiación
	12.3. Proceso de intercambio de energía radiante
	12.4. Cuerpo negro: intensidad de radiación, ley de Stefan-Bolztmann, ley
	de Planck, ley de Wien, ley del desplazamiento de Wien
	12.5. Ley de Lambert. Superficies mates o difusas.
	12.6. Emisividad, absortividad, reflectividad y transmitividad
	2.7. Superficie gris. Generalización de la Ley de Stefan-Boltzman 12.8. Ley de Kirchoff
13. INTERCAMBIO DE CALOR POR RADIACIÓN EN	
MEDIO NO PARTICIPANTE	13.2. Concepto de factor de forma
	13.3. Factor de forma entre dos superficies
	13.4. Factores de forma en un recinto cerrado
	13.5. Cálculo de los factores de forma
	13.6. Balance de energía radiante en una superficie cualquiera
	13.7. Intercambio de calor entre superficies negras
	13.8. Métodos de cálculo del intercambio de calor en un recinto cerrado
14. INTERCAMBIO DE CALOR POR RADIACIÓN EN	
MEDIO PARTICIPANTE	14.2. Absorción volumétrica monocromática en un gas. Ley de Beer
	14.3. Comportamiento real de un medio participante
	14.4. Flujo de calor intercambiado en un recinto con N superficies negras y
	un gas participante. Radiación en hornos y calderas 14.5. Radiación solar
	TT.J. Nadiacion Solal

Planificación			
	Horas en clase	Horas fuera de clase	Horas totales
Lección magistral	36	72.5	108.5
Prácticas de laboratorio	10	20	30
Seminario	4	5	9
Examen de preguntas objetivas	2.5	0	2.5

^{*}Los datos que aparecen en la tabla de planificación son de carácter orientativo, considerando la heterogeneidad de alumnado

Metodologías	
	Descripción
Lección magistral	Exposición de los contenidos de la materia en clase por parte del profesorado
Prácticas de laboratorio	Realización de prácticas en el laboratorio utilizando diversos equipos y técnicas experimentales.
Seminario	Uso de programas informáticos de cálculo.

Atención personalizada		
Metodologías	Descripción	
Lección magistral	El profesorado atenderá personalmente las dudas y consultas del alumnado durante las clase y en el horario de tutorías. Durante la clase sólo se atenderán las dudas que se refieran a conceptos que se están explicando en ese momento. Para todas las modalidades de docencia, las sesiones de tutorización podrán realizarse por medios telemáticos (correo electrónico, videoconferencia, foros de Moovi,) bajo la modalidad de concertación previa.	

Seminario	El profesorado atenderá personalmente las dudas y consultas del alumnado durante las clase y en el horario de tutorías. Durante la clase sólo se atenderán las dudas que se refieran a conceptos que se están explicando en ese momento. Para todas las modalidades de docencia, las sesiones de tutorización podrán realizarse por medios telemáticos (correo electrónico, videoconferencia, foros de Moovi,) bajo la modalidad de concertación previa.
Prácticas de laboratorio	El profesorado atenderá personalmente las dudas y consultas del alumnado durante las clase y en el horario de tutorías. Durante la clase sólo se atenderán las dudas que se refieran a conceptos que se están explicando en ese momento. Para todas las modalidades de docencia, las sesiones de tutorización podrán realizarse por medios telemáticos (correo electrónico, videoconferencia, foros de Moovi,) bajo la modalidad de concertación previa.

Evaluación						
	Descripción	Calificaci	ónRes		s de Fo orendiza	
Lección magistral	Durante el cuatrimestre, en fecha diferente a la del examen oficial, se realizará una prueba que podrá incluir preguntas de teoría y/o problemas relacionados con los contenidos impartidos. Mediante esta metodología se evalúan todos los resultados previstos en la materia.	40	A1 A2 A3 A4 A5	B1 B2 B3 B4	C10	D1 D2 D3 D4 D7 D8
Prácticas de laboratorio	Se valorará la asistencia a las sesiones tipo B y el informe de prácticas. Mediante esta metodología se evalúan todos los resultados previstos en la materia.	20	A1 A2 A3 A4 A5	B1 B3	C10	D2
Examen de pregunta objetivas	s En este examen, que se realizará en la fecha oficial establecida en el calendario de la Escuela de Ingeniería de Minas y Energía, se podrán incluir preguntas de teoría y/o problemas relacionados con los contenidos impartidos durante el transcurso de la docencia de la asignatura	40	A1 A2 A3 A4 A5	B1 B2 B3 B4	C10	D1 D2 D3 D4 D7 D8
	Resultados previstos en la materia evaluados: Identificación de los modos de transferencia de calor así como el planteamiento y resolución de problemas de ingeniería relacionados. Conocer el proceso experimental utilizado cuando se trabaja con transferencia de energía. Capacidad para conocer y entender los principios y fundamentos de la transmisión del calor. Capacidad para conocer, entender y utilizar los principios y fundamentos de la termodinámica aplicada. Calcular instalaciones de transferencia de calor. Dominar las técnicas actuales disponibles para el análisis de la ingeniería térmica.					

Otros comentarios sobre la Evaluación

Consideraciones sobre la Evaluación Continua:

El alumnado deberá obtener una calificación igual o superior a 5 sobre 10 en la suma de las calificaciones obtenidas en cada metodología evaluada.

Consideraciones sobre la Evaluación Global:

El alumnado tendrá derecho a renunciar a la evaluación continua una vez transcurrido un mes desde el inicio de la actividad docente (siguiendo la normativa de la Escuela de Ingeniería de Minas y Energía) y su calificación se obtendrá del examen realizado en la fecha oficial, debiendo obtener una nota igual o superior a 5 sobre 10 en dicha prueba.

Consideraciones sobre la Segunda Oportunidad:

El estudiantado que no haya superado la asignatura por la modalidad de evaluación continua o evaluación global en

la primera oportunidad tendrá derecho a una segunda oportunidad realizando una prueba en la fecha oficial que consta en el calendario del centro, donde deberá obtener una nota igual o superior a 5 sobre 10.

Calendario de exámenes. Verificar/consultar de forma actualizada en la página web del centro:

http://minaseenerxia.uvigo.es/es/docencia/examenes

Fuentes de información

Bibliografía Básica

Incropera F.P., Dewitt D.P., **Fundamentals of heat and mass transfer**, 4ª Edición, Editorial John Wiley & D.P., **Fundamentals of heat and mass transfer**, 4ª Edición, Editorial John Wiley & D.P., **Fundamentals of heat and mass transfer**, 4ª Edición, Editorial John Wiley & D.P., **Fundamentals of heat and mass transfer**, 4ª Edición, Editorial John Wiley & D.P., **Fundamentals of heat and mass transfer**, 4ª Edición, Editorial John Wiley & D.P., **Fundamentals of heat and mass transfer**, 4ª Edición, Editorial John Wiley & D.P., **Fundamentals of heat and mass transfer**, 4ª Edición, Editorial John Wiley & D.P., **Fundamentals of heat and mass transfer**, 4ª Edición, Editorial John Wiley & D.P., **Fundamentals of heat and mass transfer**, 4ª Edición, Editorial John Wiley & D.P., **Fundamentals of heat and mass transfer**, 4ª Edición, Editorial John Wiley & D.P., **Fundamentals of heat and mass transfer**, 4ª Edición, Editorial John Wiley & D.P., **Fundamentals of heat and mass transfer**, 4ª Edición, Editorial John Wiley & D.P., **Fundamentals of heat and mass transfer**, 4ª Edición, Editorial John Wiley & D.P., **Fundamentals of heat and mass transfer**, 4ª Edición, Editorial John Wiley & D.P., **Fundamentals of heat and mass transfer**, 4ª Edición, Editorial John Wiley & D.P., **Fundamentals of heat and mass transfer**, 4ª Edición, Editorial John Wiley & D.P., **Fundamentals of heat and mass transfer**, 4ª Edición, Editorial John Wiley & D.P., **Fundamentals of heat and mass transfer**, 4ª Edición, Editorial John Wiley & D.P., **Fundamentals of heat and mass transfer**, 4ª Edición, Editorial John Wiley & D.P., **Fundamentals of heat and mass transfer**, 4ª Edición, Editorial John Wiley & D.P., **Fundamentals of heat and mass transfer**, 4ª Edición, Editorial John Wiley & D.P., **Fundamentals of heat and mass transfer**, 4ª Edición, Editorial John Wiley & D.P., **Fundamentals of heat and mass transfer**, 4ª Edición, Editorial John Wiley & D.P., **Fundamentals of heat and mass transfer**, 4ª Edición, Editorial John Wiley & D.P., **Fundamentals of heat and**

Bibliografía Complementaria

Fernández Seara J., Rodríguez Alonso C., Uhía Vizoso F. J., Sieres Atienza J., Coeficientes de convección en casos prácticos. Correlaciones y programa de cálculo., 1ª Edición, Ciencia 3, 2005

Fernández Seara J., Sieres Atienza J. Uhía Vizoso F.J., **Manual de prácticas de transmisión de calor**, 1ª Edición, Gamesal, 2006

Chapman A.J., **Transmisión de calor**, 3ª Edición, Librería Editorial Bellisco, 1990

Mills A.F., **Transferencia de calor**, Irwin, 1995

Holman J.P., Transferencia de calor, 8ª Edición, Mc Graw Hill, 1998

Bejan, Heat transfer, John Wiley & Sons, 1993

Recomendaciones

Asignaturas que se recomienda haber cursado previamente

Física: Física I/V09G311V01102 Física: Física II/V09G311V01107

Matemáticas: Cálculo I/V09G311V01104 Matemáticas: Cálculo II/V09G311V01109 Mecánica de fluidos/V09G311V01204 Sistemas térmicos/V09G311V01205