Universida_{de}Vigo

Subject Guide 2018 / 2019

IDENTIFYIN	• • • • • • • • • • • • • • • • • • • •				
	ntal technology				
Subject	Environmental				
	technology				
Code	V12G380V01401				
Study	Degree in				
programme	Mechanical				
	Engineering				
Descriptors	ECTS Credits		Choose	Year	Quadmester
	6		Mandatory	2nd	1st
Teaching	Spanish				
language	Galician				
	English				
Department	Chemical Engineering				
Coordinator	Álvarez da Costa, Estrella				
Lecturers	Álvarez da Costa, Estrella				
	Cameselle Fernández, Claudio				
	Moldes Menduíña, Ana Belén				
	Moure Varela, Andrés				
	Pazos Curras, Marta María				
	Rincón Fontán, Mirian				
F	Yañez Diaz, Maria Remedios				
E-mail	ealvarez@uvigo.es				
Web	http://faitic.uvigo.es				
General	Subject that belongs to the Blo		cts of the industrial	echnologies	. It is part of the curricula
description	of all Degrees of Industrial Eng	ineering.			

The main objective is to achieve a basic knowledge about the Treatment and management of solid wastes, wastewaters and pollutant emission to the atmosphere. It includes also the concepts of pollution prevention and sustainability.

Com	petencies
Code	
B7	CG7 Ability to analyze and assess the social and environmental impact of the technical solutions.
C16	CE16 Basic knowledge and application of environmental technologies and sustainability.
D1	CT1 Analysis and synthesis
D2	CT2 Problems resolution.
D3	CT3 Oral and written proficiency.
D9	CT9 Apply knowledge.
D10	CT10 Self learning and work.
D12	CT12 Research skills.
D17	CT17 Working as a team.
D19	CT19 Sustainability and environmental commitment. Equitable, responsible and efficient use of resources.

Learning outcomes Expected results from this subject	Training and Learning Results		
Basic knowledge and application of environmental technologies and sustainability	C16	D2 D3 D10 D19	
Problem solving	C16	D2 D3 D10 D19	

Oral and writing communication	C16	D2 D3 D10
Knowledge application to practical and real cases	C16	D2 D3 D10 D19
Analysis and synthesis	C16	D1 D2 D3 D9 D10 D12 D17 D19
Ability to analyze and determine the social and environmental impact of the technical solutions to B7 environmental problems		D1 D3 D9 D10 D17 D19

Contents				
Торіс				
Lesson 1: Introduction to the environmental	1. Material cycle eco	pnomy.		
technology.	2. Introduction to th	e best available techniques	(BAT).	
Lesson 2: Management of waste and effluents.	1. Generation of wa	ste. Types and classification	of wastes.	
	2. Codification of wa	istes.		
	3. Urban waste man	agement.		
		nanagement. Industrial wast	e treatment facilities.	
	5. Regulations			
Lesson 3: Treatment of urban and industrial	1. Valorization.			
wastes.	Physico-chemical			
	3. Biological treatmo			
	4. Thermal treatment	nt.		
	5. Landfilling.			
	6. Soil remediation t			
Lesson 4: Treatment of industrial and municipal		municipal and industrial wa	stewaters.	
wastewaters.	Wastewater treat			
	Sludge treatment			
	4. Water treatment	and reuse		
	5. Regulations			
Lesson 5: Atmospheric pollution.	 Types and origin of atmospheric pollutants. 			
	Dispersion of pollutants in the atmosphere.			
	3. Effects of the atm			
		uting gas emissions.		
	5. Regulations			
Lesson 6: Sustainability and environmental	1. Sustainable deve			
impact assessment	2. Life cycle analysi			
	 Ecological footprint and carbon footprint. Introduction to the environmental impact assessment 			
	4. Introduction to th	e environmental impact ass	essment	
Practice 1: Codification of wastes				
Practice 2: Preparation of immobilized activated				
charcoal for use as an adsorbent.				
Practice 3: Contaminants removal by adsorption				
with immobilized activated charcoal.				
Practice 4: Pollutants removal by extraction with				
solvents.				
Practice 5: Coagulation-flocculation:				
Establishment of optimal working conditions.	<u></u>			
Practice 6: Simulation of certain stages of a EDA	R			
Planning				
	Class hours	Hours outside the classroom	Total hours	
Lecturing	26	52	78	

11

22

Problem solving

33

Laboratory practices	12	12	24	
Short answer tests	2	4	6	
Practices report	0	6	6	
Other	0	3	3	
*The information in the planning table is for g	uidance only and c	loes not take into account th	ne heterogeneity of the studer	nts.

Methodologies	
	Description
Lecturing	Teaching in the classroom of the key concepts and procedures for learning the syllabus contents
Problem solving	Solving exercises with the teacher's help and independently
Laboratory practices	Application of the knowledge acquired to the resolution of problems of environmental technology, using equipment and facilities available in the laboratory/computer room.

Personalized attention				
Methodologies	Description			
Laboratory practices				
Lecturing				
Problem solving				

	Description	Qualification			
					Result
Short answer test	All exercises, seminars, practical cases and theoretical / practical tests that are smade and delivered to the teacher throughout the course, related to the concepts and contents of the syllabus.	30	Β7	C16	D2 D3 D10 D12
	Throughout a four-month time several tests are performed.				012
	Competences CG7 and CE16 will be assessed considering the students[] answers to the theoretical questions.				
	Competences CT2, CT10 and CT12 will be assessed considering the students answers to the exercises.				
	Competenci CT3 will be assessed base on the two parts of the exam: theory and exercises; considering the precision and clarity of the answers.		_		
Practices report	Detailed report for each practices that includes the results and their discussion.	10	B7	C16	D1 D3
ΤΕροιτ	The competences: CG7, CE16, CT1, CT3, CT9 and CT10, are assessed based on the quality of the written report elaborated by each student on his/her own. The following points will be evaluated in the report: text style and correctness, structure and presentation, analysis and discussion of the results, and conclusions				D9 D10 D12 D17 D19
	Competences CT12 and CT17 will be assessed based on the laboratory work. Lab practices will be carried out in pairs, and it is expected the student develop research skills in the field of environmental technology. The written report must be done in pairs.	2			
Other	"Final Exam" consisting of problems and theoretical questions related to the syllabus of the subject.	60	B7	C16	D1 D2 D3
	CG7 and CE16 competences will be assessed in the exam of theory, based on student responses to the questions.				D9 D10
	CT2 and CT9 competences will be assessed in the exam of exercises, based on the resolution of various exercises of environmental technology, which require the use of applied knowledge related to the contents of the subject.				
	CT1, CT3 and CT10 competences will be evaluated considering both theory and exercise exams. The exam resolution requires the student to use his/her capacity of analysis and synthesis.		_		

Other comments on the Evaluation

Evaluation:

A student who choose continuous assessment, to pass the course, must achieve a **MINIMUN SCORE** of **4.0 points** (out of 10) in *each of the parts of the "final exam"*. If a student reaches the minimum grade in both parts of the "final exam", to pass the subject must obtain a **final grade of** \geq **5.0**.

Students who "officially renounces continuous assessment", will make a "final exam" of theory and problems that will be worth 90% of the final grade, and a "exam of practices" that will be worth 10% of the final grade. In any case, to pass the course, the student must achieve 50% of the maximum score in each of the constituent parts of the subject, ie, theory, problems and practices.

Second Call:

In the second call the same criteria apply.

In relation to the July exam, grades of the "short answer tests" and "practices" are maintained, and students only have to repeat the "final exam".

If, at the 1st call, a student suspended one of the parts of the "final exam" (theory or problems) and approves the other party with a grade \geq 6, on the July exam, you only need to repeat the suspended part.

Ethical commitment:

The student is expected to present an adequate ethical behavior. If you detect "unethical behavior" (copying, plagiarism, unauthorized use of electronic devices, etc.) shall be deemed that the student does not meet the requirements for passing the subject. In this case the final grade, in the current academic year, will FAIL (0.0 points).

The use of electronic devices during the assessment tests will be allowed. The fact of introducing into the examination room an unauthorized electronic device, will be reason not pass the course in the current academic year, and the final grade will FAIL (0.0 points)

Sources of information

Basic Bibliography

Mihelcic, J.R. and Zimmerman, J. B., Environmental Engineering: Fundamentals, sustainability, design, Wiley, 2014 Davis, M.L. and Masten S.J., Principles of Environmental Engineering and Science, McGraw-Hill, 2014

Metcalf & Eddy, Ingeniería de aguas residuales : tratamiento, vertido y reutilización, McGraw-Hill, 1998 Acosta, J.A. et al., Introducción a la contaminación de suelos, Mundi-prensa, 2017

Complementary Bibliography

Tchobanoglous, G., Gestión integral de residuos sólidos, McGraw-Hill, 1996

Nemerow, N. L., Tratamiento de vertidos industriales y peligrosos, Diaz de Santos, 1998

Baird, C y Cann M., Química Ambiental, Reverté, 2014

Kiely, G., Ingeniería Ambiental: fundamentos, entornos, tecnología y sistemas de gestión, McGraw-Hill, 2001 Castells et al., Reciclaje de residuos industriales: residuos sólidos urbanos y fangos de depuradora, Díaz de Santos, 2009

Albergaria, J.M. and Nouws H.P.A., **Soil remediation**, Taylor and Francis, 2016

Sharma, H. D., and Reddy, K. R., Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies, John Wiley & Sons, 2004

Wark and Warner, Contaminación del aire: origen y control, Limusa, 1996

Jonker, G. y Harmsen, J., Ingeniería para la sostenibilidad, Reverté, 2014

Azapagic, A. and Perdan S., Sustainable development in practice: Case studies for engineers and scientists, Wiley, 2011

Recommendations

Subjects that it is recommended to have taken before

Physics: Physics 1/V12G360V01102 Physics: Physics 2/V12G360V01202 Chemistry: Chemistry/V12G380V01205

Other comments

To enroll in this subject is necessary to have passed or be enrolled in all subjects of previous courses to the course that is located this subject.