Universida_{de}Vigo

Subject Guide 2023 / 2024

IDENTIFYIN	G DATA				
Hydraulic r	esources, installations and hydro-pow	er plants			
Subject	Hydraulic				
	resources,				
	installations and				
	hydro-power plants				
Code	V09G291V01305				
Study	Grado en				
programme	Ingenieria de la				
Decerimtere	Energia		Chasses	Veer	Our deserter
Descriptors			Choose	rear	Quadmester
Taaabina	0 Cranich		Mandatory	3ra	200
languago	Spanish				
language	English				
Department					
Coordinator	Conde Fontenla, Marcos				
coordinator	Molares Rodríguez Alejandro				
Lecturers	Conde Fontenla, Marcos				
	Molares Rodríguez, Alejandro				
	Vence Fernández, Jesús				
E-mail	mfontenla@uvigo.gal				
	a.molares@uvigo.es				
Web	http://moovi.uvigo.gal/				
General	The main goal of this course is to acquire	the scientifi	c knowledge and	the study of the	e technical application
description	concerning energy conversion devices that mechanics to hydropower systems is revis common types of water pumps and turbin	at employ wa sited here fr nes.	ater as the exchai om an industrial p	nger fluid. The a point of view, de	application of fluid ealing with the most
Training an	d Learning Results				
Code					
A1 That th	e students demonstrate to possess and uno	derstand kno	wledge in an are	a of study that	is part of the general
educati aspects	on (second level), and often found at a leve that involve knowledge from the avant-ga	el that, altho arde of the fi	ough based on adv eld of study	vanced textboo	ks, also includes some
A2 That the	e students know how to apply their knowle	dge to their	work or vocation	in a professiona	al way and that they
possess	the competences that are usually demons	strated throu	igh the elaboratio	on and defense	of arguments and the
resoluti	on of problems within their area of study				
A3 That the judgme	e students have the capability to gather an nts that include a reflection on relevant so	id interpret r cial, scientifi	elevant data (usu c or ethical issues	ally within their	r area of study) to issue
A4 Inat the	e students can transmit information, ideas,	, problems a	nd solutions to a s	specialized and	non-specialized
	e e students develop these learning capabilit	tion noncorro	auto undortako fu	urthan studios w	ith a high degree of
	e students develop those learning capabilit		y to undertake to	inther studies w	ith a high degree of
	a draw links between the different element	ts of all the l		od undorstand	ing them as components
of a box	ty of knowledge with a clear structure and	strong inter	nal cohesion	eu, unuerstanu	ing them as components
B2 Ability t	o develop a project to completion in any fi	eld of this hr	anch of engineeri	ing, combining	appropriately the
knowle	dge acquired, consulting the relevant source ciplinary work teams.	ces of inform	ation, carrying ou	it any required	inquiries, and joining
B3 To succ	est and develop practical solutions, using t	the relevant	theoretical know	ledge, to pheno	mena and problems-
situatio	ns of ordinary reality that are specific to er	ngineering. c	leveloping appror	priate strategies	
B4 To foste	er collaborative working. communication. o	rganization a	and planning skill	s, along with th	e ability to take
respons	ibilities in a multilingual, multidisciplinary	work enviror	nment that promo	tes education f	or equality, peace and
respect	for fundamental rights.				
B5 To be fa profess	miliar with the relevant sources of information competently, accessing all the present	ation, includi and future t	ng constant upda ools of informatio	ting, in order to n search, const	<pre>practice one[]s antly adapting to</pre>

- C20 Applied knowledge of the fundamentals of hydraulic services and facilities. Planning and management of hydraulic resources.
- C21 Applied knowledge of the fundamentals of mechanical and fluid systems and machines.

C23 Ability to design electrical power plants.

D5 To become aware of the need for continuous training and the constant improvement of quality, developing the values that are characteristic of scientific thinking, showing flexible, open and ethical attitudes in the face of different situations and opinions, particularly as regards non-discrimination on the grounds of gender, race or religion, respect for fundamental rights, accessibility, etc.

Expected results from this subject				
Expected results from this subject Training and Lear			nd Learnir	ng Results
To understand the basic laws about the fundamentals of fluid machines	A1	B1	C20	D5
		B5	C21	
			C23	
Acquire skills on the process of hydraulic installations sizing	A2	B1	C20	D5
	A3	B2	C21	
	A4	B3	C23	
	A5	B4		
		B5		

Contents						
Topic						
1 Machines of fluid	1.1 Introduction.					
	1.2 Classification of fluid machines.					
	1.3 Main parts of a positive displacement machine.					
	1.4 Positive displacement principle for a machine.					
	1.5 Main parts of a turbo-machine.					
	1.6 Classification of turbo-machines					
	1.7 Continuity equation					
	1.8 Angular momentum conservation law Fuler's theorem					
	1.0 Fuler's equation					
	1.0 Bernoulli's equation (relative movement)					
	1.10 Derrou of reaction					
	1.11 Degree of reaction.					
	5 Efficiencies and newer diagram					
	1.12 Similarity in hydraulic turbe machines. Specific speed					
	1.15 Similarity in Hydraulic turbo-machines. Specific speed.					
2 Hydraulic pumps. Classification and	2.1 Classification and constituent elements of hydraulic pumps.					
constituent elements. Pumping facilities.	2.2 One-dimensional theory of turbo-pumps: radial and axial flow.					
	2.3 Two-dimensional theory for turbo-pumps: radial and axial flow.					
	2.4 Basic design parameters of radial turbo-machines.					
	2.5 Basic design parameters of axial turbo-machines.					
	2.6 Characteristic curve of radial pumps.					
	2.7 Characteristic curve of axial and diagonal pumps.					
	2.8 Similarity in turbo-pumps. Particular cases.					
	2.9 Impeller trim on radial turbo-machines.					
	2.10 Pump-installation coupling. Selection of machines. Arrangement of					
	pumps in series and in parallel.					
	2.11 Priming a pump.					
	2.12 Cavitation in centrifugal pumps					
	2.13 Introduction to the phenomenon of water hammer in pumping					
	installations.					
3 Hydraulic turbines and hydroelectric power	3.1 Classification of hydraulic turbines.					
stations	3.2 Pelton Turbine.					
Stations	3.3 Francis Turbine: Slow normal and fast					
	3.4 Axial turbines: Kaplan and propeller. Bulb groups					
	3.5 Basic aspects on the regulation of hydraulic turbines					
	3.6 Similarity in hydraulic turbines. Parameters of interest					
A Hydroploctric facilities: use of hydroulic	4.1 Introduction					
4 Trydroelectric facilities, use of frydraulic	4.2 Classification and types of uses					
energy.	4.2 Classification and types of uses					
	4.5 Singular elements: dam, reliefs, water pipes and pensiocks.					
	4.4 ACCESSOFY DEVICES.					
	4.5 Water nammer in pensiocks.					
	4.0 Surge lanks and other elements of protection.					
Planning						
	Class hours Hours outside the Total hours					

classroom

Lecturing	16	28	44	
Practices through ICT	4	4	8	
Laboratory practical	10	15	25	
Problem solving	20	3	23	
Autonomous problem solving	0	47.5	47.5	
Essay questions exam	1	0	1	
Problem and/or exercise solving	1.5	0	1.5	
*The information in the planning table is for	or guidance only and doe	s not take into account t	he heterogeneity of the	students.

Methodologies Description Lecturing Oral presentations and dissertations in the classroom, developing the different topics of the course. It is strongly recommended that the student has previously read the material at home in order to contribute with questions or doubts during class-time. Some basic method of solving problems associated with the coupling of pumps, application of the Practices through ICT laws of similarity and calculation of installations and networks using generic calculation programs will be addressed: spreadsheet and/or mathematical software. The licenses will be GNU GPL, or a commercial one funded by the school/university. Up to three laboratory practices will be carried out in order to clarify knowledge acquired in the Laboratory practical classroom. The relevant guides will be provided for each practice in such a way that, after data collection, they can return to the teacher the results and conclusions of the experimental work, after a deep analysis of them. Exercises are previously given to the students, bringing them a try to solve by themselves. Later, Problem solving some of them will be solved in class by the students and/or the teacher Autonomous problem The students will solve the proposed problems. They can ask for support during the scheduled tutorship hours. solving

Personalized assistance					
Methodologies	Description				
Autonomous problem solving	Personalized attention will be given to the students during class (throughout the possible questions that could arise) and during the specific timetable of the teacher for tutorship. Updated information of the tutorship timetables will be given to the students during first week of class. Tutorshiping will take place both in face-to-face or distance modes, by means of the e-learning applications offered by the University of Vigo or equivalent methods.				

Assessment						
	Description	Qualification		Trai	ning a	nd
			Le	earni	ng Res	sults
Laboratory practical	Delivery of a report/questionnaire and/or completion of an oral test of at least	of 10 A	1 12	B1 B3	C20 C21	D5
	two experimental/ICI practices throughout the course	A A	43 44	В4 В5	C23	
	EXPECTED RESULTS FROM THIS SUBJECT:					
	Comprise the fundamental laws about the basics in fluid machines. Acquire skills on the process of hydraulic installations sizing.					
Problem solving	These are two continuous assessment tests that will be carried out throughout	25 A	\1 \2	B1 B2	C20 C21	D5
	the school year. They will consist of written exercises/problem solvin tests. Each one will have a weight of 12.5% of the total grade.	ig A	\3 \4	B3	C23	
	Consult detailed methodology in the "other comments on the evaluation".	ŀ	\5			
	EXPECTED RESULTS FROM THIS SUBJECT:					
	Comprise the fundamental laws about the basics in fluid machines. Acquire skills on the process of hydraulic installations sizing.					

Essay questions exam	It will consist of two written tests that may consist of: theoretical / practical questions that include resolution of exercises and problems and/or topic to be developed. Each test will represent 12.5% of the total grade. For more information, see the detailed methodology in the section "other comments on the evaluation" EXPECTED RESULTS FROM THIS SUBJECT: Understand the basics of Fluid Mechanics Comprise the fundamental laws about the basics in fluid machines. Acquire skills on the process of hydraulic installations sizing.	25	A1 A2 A3 A4 A5	B1 B2 B3 B4 B5	C20 C21 C23	D5
Problem and/or exercise solving	This test will coincide with the official exam established in the center's calendar. It will consist of a written test for the resolution of exercises / problems. Consult the detailed methodology in the "other comments on the evaluation" section. WITH THIS METHODOLOGY ALL THE EXPECTED RESULTS FROM THIS SUBJECT WILL BE TACKLED	40	A1 A2 A3 A4 A5	B1 B2 B3 B4 B5	C20 C21 C23	D5

Other comments on the Evaluation

The student will be able to freely choose the evaluation methodology (Global or Continuous) within the established deadline and procedure set by the school, and in any case in accordance with current regulations.

The problem of students choosing one evaluation methodology or another, according to the maximum weights established, is most dramatically manifested in the case of two students who take the final exam/retest and obtain exactly the same grade (for example, 6/10); one passes because he has chosen the global evaluation, while the other fails because of selecting the continuous evaluation and only obtained a 4.2 out of 10 in the average of the continuous evaluation tests.

To mitigate this contradiction derived from the application of the current regulations in the case of continuous assessment mode, two grades will be calculated for each student, and the higher of the two will be selected.

Continuous Evaluation Mode

In the calculation of the final grade, four evaluation blocks will be considered with the following weights:

• First partial test of continuous evaluation, weight: 25%. Test consisting of theoretical/practical questions, including problem-solving and/or a topic to develop. It may include multiple-choice questionnaires.

 \cdot Second partial test of continuous evaluation, weight: 25%. Test consisting of theoretical/practical questions, including problem-solving and/or a topic to develop. It may include multiple-choice questionnaires.

• Final test of continuous evaluation (retest), weight: 40%. Test consisting of theoretical/practical questions, including problem-solving and/or a topic to develop. It may include multiple-choice questionnaires.

• Practical work, weight: 10%. Submission of a report/questionnaire and/or oral examination of at least two experimental/IT practices to be carried out throughout the course.

In the spirit of the above paragraph, the final course grade will be assigned to all students using the following formula:

Final Grade = max $\{0.6 \text{ NC} + 0.4 \text{ NF}, \text{NF} + (1/20)\text{NC}(10 - \text{NF})\}$

where NC is the weighted average of the two continuous evaluation tests and practical (in the range of 0 to 10) and NF is the grade of the final exam (retest) (also out of 10).

Global Evaluation Mode

A final exam will be held on the official date approved by the school, with a maximum score of 100%.

Second opportunity call

In the second opportunity call (extraordinary in July), the same methodology as in the first opportunity will apply, with a new final evaluation test for students who choose continuous evaluation and a new final exam for those following the global evaluation. In the continuous evaluation mode, therefore, the grades of the partial tests and practical work are retained.

Exam calendar. Check/consult the center's web page for updates:

Sources of information

Basic Bibliography

Round, George F, Incompressible Flow Turbomachines. Design, Selection, Applications, and Theory, 1^a ed., Elsevier - Gulf Professional Publishing, 2004

Agüera Soriano, José, **Mecánica de fluidos imcompresibles y turbomáquinas hidráulicas**, 5ª ed., Editorial Ciencia 3, S.L., 2002

Mataix Plana, Claudio, **Mecánica de fluidos y máquinas hidraúlicas**, 2ª ed., Ediciones del castillo, S.A., 1986

Hussian, Z. and Abdullah, Z. and Alimuddin, Z., **Basic Fluid Mechanics and Hydraulic Machines**, 1^a ed., CRC Press, 2009 Modi, P. N. and Seth, S. M., **Hydraulics and Fluid Mechanics Including Hydraulic Machines (In SI Units)**, 15^a ed., Standard Book House, 2004

Complementary Bibliography

Mataix Plana, Claudio, **Turbomáquinas hidráulicas**, 2ª ed., ICAI, 2009

Girdhar, P. and Moniz, O, Practical Centrifugal Pumps. Design, Operation and Maintenance, 1^a ed., Elsevier -Newnes, 2005

Hernandez Krahe, Jose Maria, Mecánica de Fluidos y Máquinas Hidráulicas/Unidades Didácticas V y VI, 1ª ed., UNED, 1995

Kothandaraman, C. P. and Rudramoorthy, R., Fluid Mechanics and Machinery, 2^a ed., New Age International (P) Ltd., Publishers, 2007

Vasandani, V. P., **Theory and Design of Hydraulic Machines Including Basic Fluid Mechanics**, 11^a ed., Khanna Publishers, 2010

Gülich, Johann F., Centrifugal Pumps, 3ª ed., Springer, 2014

Kumar, P., Hydraulic Machines: Fundamentals of Hydraulic Power Systems, 1ª ed, CRC Press, 2012

Bansal, R. K., **A Textbook of Fluid Mechanics and Hydraulic Machines (in SI units)**, 1^a ed., Laxmi Publications, 2005 Gupta, S. C., **Fluid Mechanics and Hydraulic Machines**, 1^a ed., Pearson Education Canada, 2006

Patra, K. C., Engineering Fluid Mechanics and Hydraulic Machines, 1ª ed., Alpha Science Intl Ltd, 2012

de Lamadrid Martínez, Abelardo, **Máquinas hidráulicas. Turbinas Pelton. Bombas centrífugas**, 1ª ed., Servicio de Publicaciones, ETSII - UPM, 1986

Recommendations

Subjects that are recommended to be taken simultaneously

Thermal engines and turbo-machines/V09G291V01308

Subjects that it is recommended to have taken before

Circuits and Electrical Machines/V09G291V01201 Fluid mechanics/V09G291V01204

Other comments

It is recommended to have previously passed a Fluid Mechanics course.