
Universida_{de}Vigo

Guía Materia 2015 / 2016

Termodinámica y de la Transferencia de Calor. El conocimiento de éstos principios es básico en Ingeniería Térmica. Por ejemplo, para la realización de un análisis energético (con determinación del rendimiento energético y exergético) de sistemas de potencia para la generación de electricidad (ciclo combinado con turbina de vapor y de gas), un ciclo de potencia mecánica, un ciclo en bomba de calor, etc. El conocimiento de si un proceso termodinámico puede ocurrir o no en la realidad es imprescindible para el diseño de nuevos procesos, así como el conocimiento de las máximas prestaciones que se pueden obtener en los diferentes dispositivos que componen una instalación energética, y cuáles son las causas que imposibilitan obtener esas máximas prestaciones. Además, el estudio de las propiedades termodinámicas de los fluidos de trabajo que circulan por los dispositivos, agua, aire, refrigerantes, gases y mezcla de gases, es indispensable para analizar el comportamiento de los sistemas térmicos. Asimismo, el estudio del procedimiento a seguir para el análisis energético de instalaciones energéticas de sistemas de refrigeración, acondicionamiento de aire y en procesos de combustión es de gran interés.

Por otro lado, es interesante para el alumno conocer los mecanismos por los cuales se produce la transferencia de la energía, principalmente debido a una diferencia de temperaturas, centrándose en determinar la manera y la velocidad a la que se produce ese intercambio de energía. En este sentido se presentan los tres modos de transferencia de calor y los modelos matemáticos que permiten calcular las velocidades de transferencia de calor. Así se pretende que los alumnos sean capaces de plantear y resolver problemas ingenieriles de transferencia de calor mediante el uso de ecuaciones algebraicas. También se pretende que los alumnos conozcan otros métodos matemáticamente más complejos de resolución de problemas de transferencia de calor y sepan dónde encontrarlos y cómo usarlos en caso de necesitarlos.

Comp	petencias
Códig	
В3	CG3 Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.
B4	CG4 Capacidad para resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la ingeniería industrial.
B5	CG5 Conocimientos para la realización de mediciones, cálculos, valoraciones, tasaciones, peritaciones, estudios, informes, planes de labores y otros trabajos análogos.
B6	CG6 Capacidad para el manejo de especificaciones, reglamentos y normas de obligado cumplimiento.
B7	CG7 Capacidad para analizar y valorar el impacto social y medioambiental de las soluciones técnicas.
B11	CG11 Conocimiento, comprensión y capacidad para aplicar la legislación relativa a instalaciones industriales.

C7 CE7 Conocimientos de termodinámica aplicada y transmisión de calor. Principios básicos y su aplicación a la resolución de problemas de ingeniería. D1 CT1 Análisis y síntesis. CT2 Resolución de problemas. D2 CT6 Aplicación de la informática en el ámbito de estudio. D6 D7 CT7 Capacidad para organizar y planificar. D9 CT9 Aplicar conocimientos. CT10 Aprendizaje y trabajo autónomos. D10 D16 CT16 Razonamiento crítico. D17 CT17 Trabajo en equipo. D20 CT20 Capacidad para comunicarse con personas no expertas en la materia.

Resultados de aprendizaje					
esultados previstos en la materia		Resultados de Formaciór			
		y Aprendizaje			
Capacidad para conocer, entender y utilizar los prinicpios y fundamentos de la termodinámica	В3	C7	D1		
aplicada	B5		D2		
	В6		D7		
	В7		D9		
			D10		
			D16		
			D17		
			D20		
Capacidad para conocer y entendr los principio y fundamentos de la transmision del calor	В3	C7	D1		
	B5		D2		
	В6		D7		
	В7		D9		
	B11		D16		
			D17		
		C7	D20		
Capacidad para conocer y entender los principios y fundamentos de equipos y generadores			D1		
térmicos	B5		D2		
	В6		D7		
	В7		D9		
			D10		
			D16		
			D17		
			D20		
Analizar el funcionamiento de sistemas térmicos, como sistemas de bomba de calor y ciclos de	B4 B5	C7	D1		
refrigeración o ciclos de potencia, identificando componentes, así como los ciclos empleados para obtener altas prestaciones			D2		
			D6		
			D7		
	B11		D9		
			D16		
			D17		

Contenidos				
Tema				
REVISIÓN DEL PRIMER Y SEGUNDO PRINCIPIO DE	Propiedades de un sistema			
LA TERMODINÁMICA	Procesos: cambio de estado			
	Principio de Conservación de la Energía: Calor y Trabajo.			
	Segundo Principio de la Temodinámica: Concepto de Entropía Procesos			
	reversibles e irreversibles			
PROPIEDADES DE SUSTANCIAS PURAS: MANEJO	Sustancia Pura			
DE TABLAS Y DIAGRAMAS	Procesos de cambio de fase en sustancias puras			
	Tablas de propiedades			
	Diagramas de propiedades para procesos de cambio de estado			
	termodinámico			
	Ecuación de estado de gas ideal			

ANÁLISIS ENERGÉTICO Y EXERGÉTICO DE SISTEMAS ABIERTOS	Principio de Conservación de la masa Trabajo de flujo y energía de un fluido en movimiento Análisis energético de sistemas de flujo estacionario Estudio de los dispositivos de ingeniería de flujo estacionario Análisis de procesos de flujo no-estacionario Concepto de Exergía: Balance de Exergía Exergía de Flujo Analísis de Exergía de sistemas de flujo estacionario Eficiencia Termodinámica
APLICACIONES DE LA INGENIERÍA TERMODINÁMICA: CICLOS DE POTENCIA Y CICLOS DE REFRIGERACIÓN	Consideraciones básicas para el estudio de ciclos termodinámicos S Estudio de los ciclos de potencia de vapor Descviación de los ciclos de vapor reales respecto de los idealizados Mejoras al ciclo de potencia de vapor
	Introducción a los ciclos motores de combustión Simplificaciones en el estudio de los ciclos motores Ciclos Motores: Ciclo Otto y Ciclo Diesel Otros ciclos de los motores de combustión
	Introducción a las turbinas de gas Análisis de ciclos de turbinas de gas: ciclo de Brayton Mejoras de ciclo Brayton
	Refrigeradores y bombas de calor El ciclo ideal de refrigeración de compresión de vapor
	Análisis mediante la segunda ley de los ciclos de potencia y ciclos de refrigeración
CONCEPTOS Y PRINCIPIOS FUNDAMENTALES DE LA TRANSMISIÓN DE CALOR	Transferncia de calor en la ingeniería Mecanismos de la transmisión de calor
TRANSMISIÓN DE CALOR POR CONDUCCIÓN. CONDUCCIÓN EN RÉGIMEN PERMANENTE UNIDIRECCIONAL	Ecuación de la conducción del calor: Ley de Fourier Condiciones de frontera e iniciales Conducción del calor en estado estacionario Transferencia de calor en diferentes configuraciones: pared plana, cilindros, esfera
TRANSMISIÓN DE CALOR POR CONVECCIÓN: FUNDAMENTOS Y CORRELACIONES DE CONVECCIÓN	Fundamentos de transmisión de calor por Convección (Flujo laminar y turbulento) Ecuación de la trasmisión de calor por Convección Convección natural y forzada: mecanismo físico Estudio de Correlaciones para el estudio de la Convección
TRANSMISIÓN DE CALOR POR RADIACIÓN: PRINCIPIOS GENERALES. RADIACIÓN TÉRMICA APLICACIONES INDUSTRIALES	Fundamentos de la transmisión de calor por Radiación. Radiación térmica. Intercambiadores de calor

Planificación			
	Horas en clase	Horas fuera de clase	Horas totales
Sesión magistral	32.5	65	97.5
Prácticas de laboratorio	6	9	15
Resolución de problemas y/o ejercicios	10	30	40
Pruebas de respuesta corta	0	0	0
Resolución de problemas y/o ejercicios	0	0	0

^{*}Los datos que aparecen en la tabla de planificación son de carácter orientativo, considerando la heterogeneidad de alumnado

Metodologías	
	Descripción
Sesión magistral	Exposición por parte del profesor de los contenidos de la materia objeto de estudio, donde se procurará la máxima participación del alumno, a través de su implicación directa en el planteamiento de cuestiones y/o problemas,

Prácticas de laboratorio	Experimentación de procesos reales en laboratorio y que complemantan los contenidos de la materia, completado con alguna práctica con software específico			
	CONTENIDOS PRÁCTICOS: (al menos se realizarán 3 de las 6 prácticas propuestas)			
	1) Aplicaciones del Primer Principio: Determinación Experimental de los Procesos Isotermos y Adiabáticos			
	2) Evaluando Propiedades Termodinámicas de Sustancias Puras mediante el uso de software informático			
	3) Estudio Experimental de un Ciclo de Vapor			
	4) Estudio Experimental de un Ciclo de Refrigeración por Compresión de Vapor y funcionamiento como Bomba de Calor			
	5) Cálculo Experimental de la Conductividad Térmica en Placas			
	6) Evaluando la Transferencia de Calor por Radiación: Ley de Stefan-Boltzmann			
Resolución de	Resolución de problemas y/o ejercicios relacionados con la asignatura que el alumno realizará en			
problemas y/o ejercicios	aula y/o laboratorio. Se resolverán problemas de carácter ""tipo"" y/o ejemplos prácticos. Se			
	enfatizará el trabajo en plantear métodos de resolución y no en los resultados.			

Metodologías	Descripción
Sesión magistral	Planteamiento de dudas en el horario de tutorías. El alumno planteará las dudas concernientes a los contenidos a desarrollar de la asignatura, y/o ejercicios o problemas relativos a la aplicación de estos contenidos
Prácticas de laboratorio	Planteamiento de dudas en el horario de tutorías. El alumno planteará las dudas concernientes a los contenidos a desarrollar de la asignatura, y/o ejercicios o problemas relativos a la aplicación de estos contenidos
Resolución de problemas y/o ejercicios	Planteamiento de dudas en el horario de tutorías. El alumno planteará las dudas concernientes a los contenidos a desarrollar de la asignatura, y/o ejercicios o problemas relativos a la aplicación de estos contenidos

Evaluación					
	Descripción	Calificación	Resultados Formaciós Aprendiza		ón y
Pruebas de respues corta	sta La nota correspondiente a la Evaluación Continua estará basada en pruebas escritas de respuesta corta Resultados de aprendizaje: Capacidad para conocer, entender y utilizar los principios y fundamenots de la termodinámica aplicada y la transmisión de calor	30	B3 B4 B5 B6 B7 B11	C7	D1 D2 D6 D7 D9 D16 D20
Resolución de problemas y/o ejercicios	Examen final. Consistirá en un examen sobre los contenidos de la materia Resultados de aprendizaje: Capacidad para conocer, entender y utilizar los principios y fundamenots de la termodinámica aplicada y la transmisión de calor	70	B3 B4 B5 B6 B7 B11	C7	D1 D2 D6 D7 D9 D16 D20

Otros comentarios sobre la Evaluación

No se exigirá una nota mínima en el examen final para sumar la correspondiente nota de evaluación continua

Aquellos alumnos que no hagan Evaluación Continua, previa renuncia oficial utilizando los cauces oficiales previstos porla escuela, serán evaluados mediante un examen final de todos los contenidos debla asignatura que supondrá el 100% de la nota máxima (10 pts). Esta prueba puede ser considerada dividida en dos partes. Una para evaluar el 70%, y la otra el 30%.

Para la realización de las "pruebas de respuesta corta", consideradas éstas como Evaluación Continua a realizar a lo largo del curso, el alumno deberá ir provisto de los materiales y/o documentación necesarios para realizarla: calculadora (no-programable), tablas y diagramas de propiedades de aquellas sustancias que se estudian. No se ppermitirá ninguna clase de formulario o similar.

Estas "pruebas de respuesta corta" pueden ser planteadas durante las horas de sesiones magistrales y/o durante las horas de prácticas (bien en el laboratorio o bien en clase de problemas) a lo largo del curso.

Las "pruebas de respuesta corta" consistirán en una serie de ejercicios en los cuales el alumno podrá responder mediante

una contestación breve o una cálculo sencillo. También se incluyen las pruebas tipo Test.

Todas las pruebas, bien las correspondientes a la Evaluación Continua como al Examen Final, deberán realizarse a bolígrafo o pluma, preferiblemente azul. No se permitirá la entrega de estas pruebas a lápiz o a bolígrafo rojo.

No se permitirá, en todas la pruebas, bien consideradas de evaluación continua o examen final, el uso de dispositivos electrónicos tales como tablet, smartphone, portátil, etc.

Compromiso ético: Se espera que el alumno presente un comportamento ético aceptable. En el caso de detectar un comportamiento no-ético (copia, plagio, utilización de aparatos electrónicos no autorizados, y otros) se considerará que el alumno no reúne los requisitos necesarios para superar la materia. En este caso la cualificación global para el presente curso académico será de suspenso (0.0).

En la convocatoria de Julio (2ª edición) los alumnos que sigan el proceso de evaluación continua podrán optar por ser evaluados de esta parte mediante una prueba escrita que representará el 30% de la nota máxima. Para ello, el alumno tendrá que renunciar, previamente y por escrito, a la calificación obtenida durante la evaluación continua. El restante 70% consistirá en un examen final sobre los contenidos de la materia.

La calificación final del alumno se determinará sumando los puntos obtenidos en el examen final (70%) y los obtenidos por evaluación continua (30%)

Profesorado responsable de grupo:

Grupo T1: Jorge Morán

Grupo T2: José Manuel Santos

Fuentes de información

Çengel, Yunus y Boles, Michael, Termodinámica, 7ª Edición - 2011,

Moran M.J. y Shapiro H.N., Fundamentos de Termodinámica Técnica, 1993,

Wark, K. y Richards, D.E., Termodinámica, 2010,

Merle C. Porter y Craig W. Somerton, Termodinámica para ingenieros, 2004,

Çengel Y.A., y Ghajar A.J., Transferencia de Calor y Masa. fundamentos y aplicaciones, 2011,

Kreith J. y Bohn M.S, Principios de Transferencia de Calor, 2001,

Mills A.F., Transferencia de calor,

Çengel Y.A., Introduction to Thermodynamics and Heat Transfer, 2008,

Çengel, Yunus A., Heat and mass transfer: a practical approach, 2006,

Incropera F.P. y DeWitt D.P, Introduction to Heat Transfer, 2002,

Recomendaciones

Asignaturas que se recomienda haber cursado previamente

Física: Física II/V12G340V01202

Matemáticas: Cálculo I/V12G340V01104

Matemáticas: Cálculo II y ecuaciones diferenciales/V12G340V01204

Otros comentarios

Para matricularse en esta materia será necesario tener superado o estar matriculado de todas las materias de cursos inferiores al curso en el que está emplazada esta materia

Dada la limitación de tiempo de la materia Termodinámica y Transmisión de Calor, se recomienda que el alumno haya superado la materia Física II de 1º Curso o que tenga los conocimientos de los Principios Termodinámicos equivalentes.