Universida_{de}Vigo

Subject Guide 2015 / 2016

			Si	ubject Guide 2015 / 202
IDENTIFYIN	G DATA			
Mechanics	of Materials			
Subject	Mechanics of			
	Materials			
Code	V12G360V01404			
Study	(*)Grao en			
programme	Enxeñaría en Tecnoloxías Industriais			
Descriptors	ECTS Credits	Choose	Year	Quadmester
I	6	Mandatory	2nd	2nd
Teaching				
language				
Department				
Coordinator	Caamaño Martínez, José Carlos			
Lecturers	Baamante Vázquez, Modesto Manuel Antonio			
	Caamaño Martínez, José Carlos			
	Lorenzo Mateo, Jaime Alberto			
	Pereira Conde, Manuel			
F	Riveiro Rodríguez, Belén			
E-mail	jccaam@uvigo.es			
Web General	http://faitic.uvigo.es Introduction to linear elastic materials, and analysis c	finternal loading	a atraca and atr	ain relationshing. Ctud
description	of the fundamentals of mechanics of materials and paralysis			
Competenc				
Competenc Code				
	owledge in basic and technological subjects that will er	able them to lea	rn now mothodo	and theories and equi
	th versatility to adapt to new situations.		m new methods	and theories, and equi
	lity to solve problems with initiative, decision making,	creativity critical	I thinking and to	communicate and
	t knowledge, skills and abilities in the field of Industrial			communicate and
	nowledge and use of the principles of strength of material			
	alysis and synthesis.			
	blems resolution.			
	bly knowledge.			
	elf learning and work.			
	itical thinking.			
	orking as a team.			
Learning ou	itcomes			
	ults from this subject			Training and Learning
	· · · · · · · · · · · · · · · · · · ·			Results
To know the	differences between rigid body and elastic solid.		E	33 C14 D1
	state of stress and deformation of a deformable solid a	and the relationsh		34 D2
them.				D9
To onaly the	knowledge convised to the determination of the maxim	anna nalmaa af th	a atraga at a	D10

To apply the knowledge acquired to the determination of the maximum values of the stress at a point of a deformable solid.

To know the basic principles governing the strength of materials.

To know the relationships between the different stresses and strains they originate.

To apply the knowledge acquired to the determination of internal loads.

To apply the acquired knowledge on the calculation of stresses in bar elements.

To know the basics of the deformation of rod elements.

To apply the knowledge gained to sizing bar elements.

Contents

D10

D16

D17

1. Introduction	1.1 Introduction				
		 1.2 Review of statics fundamentals and applied concepts for further 			
	progress in solid mechanics and stress analysis				
2. Axial load	2.0 Stress and strain. Linear elastic materials				
	2.1. Normal stress in an axially loaded prismatic bar.				
	2.2. Equilibrium of a				
	2.3. Stress-Strain diagram of ductile materials. Hooke s Law.				
	2.4. Elastic deformation of an axially loaded member.				
	2.5. Saint-Venant principle and superposition principle.				
	2.6. Statically governed problems.				
	2.7. Statically indeterminate problems.				
	2.8. Thermal stress and assembly misfits.				
3. Bending	3.1 Beams: definition and types. Loads on beams.				
	3.2 Internal shear forces and bending moments.				
	3.3 External load, shear force and bending moment relationships.				
	3.4 Shear and moment diagrams				
	3.5 Pure bending and non-uniform bending. Hypothesis and limitations.				
	3.6 Normal stresses in unsymmetric bending.				
	3.7 Symmetric bending. The flexure formula (Navier🛛 s Law).				
	3.8 Section modulus of a beam. Ideal beam cross-section.				
	3.9 Deflection of beams and shafts. Rotation and displacement. Mohr				
	Theorems.				
	3.10 Statically indeterminate problems.				
4. Buckling of columns	4.1. Critical load				
	4.2. Ideal column with pin supports				
	4.3. Columns having different types of supports.				
5. Transverse Shear	5.1 Shear in straigh members				
	5.2. The shear formula				
	5.3. Design of joints.				
6. Torsion	6.1. Torsional deformation of a circular shaft				
	6.2. The torsion formula				
	6.3. Angle of twist				
Planning					
	Class hours	Hours outside the	Total hours		
		classroom			
Master Session	32.5	49	81.5		
Laboratory practises	16	13	29		
Troubleshooting and / or exercises	1	17.5	18.5		
	<u>+</u>	17.0			

Long answer tests and development303*The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

1

17

Description
Lecture where theoretical principles are presented using digital media, videos and blackboard.
Activities of application of the knowledge to concrete situations and of acquisition of basic skills and procedural skills related with the subject of study
Resolution of problems related to real case studies.
Collection of problems to be solved by the students that must be delivered as a coursework.
A DI R

Personalized attention

Methodologies

Laboratory practises

Autonomous troubleshooting and / or exercises

Autonomous troubleshooting and / or exercises

Master Session

Assessment

Description

Qualification Training and Learning Results

Description

18

Laboratory practises	A) it will evaluate the attendance and active participation in all the practicals of the semester, as well as the correct delivery (time and form) of all the documentation requested (reports, exercises, etc.). Practical sessions will be held in a fixed date, so it is not possible to attend the practical in a later date. Whether the student does not attend to a practical, he/she must demonstrate that the absence was due to unavoidable reasons (e.g. medical reasons). Practicals will marked with the value indicated, only when the student reaches the minimum mark in the written exam, which is 45%. (See following section: 'Other comments')	2.5	Β3	C14	D1 D2 D9 D10 D16 D17
Troubleshooting and / or exercises	C) Written tests to evaluate the individual work delivered by the student in the previous sections (A and B). It will be compulsory the attendance to the 90% of the practicals and the on-time delivery of all the lists of problems explained in section B, to obtain the marks given in section C. The marks obtained in the sections A and B will proportionally affect to the marks of the section C. The section C will be marked with a maximum value of 10% of the total mark, only when the student obtain the minimum mark in the written exam, which is 45%. (See following section: 'Other comments')	10	B3 B4	C14	D1 D2 D9 D10 D16
Autonomous troubleshooting and	B) Lists of problems to solve individually by students will be published in the platform FAITIC-TEMA along the course. Each list of problems will have a deadline. All this coursework needs to be delivered to the corresponding lecturer in time and form, so they can be counted for marking. Any defect of form (out of term, absence of name, etc.) will invalidate the exercises and they will not be marked. When all the coursework are correctly submited, they will be marked with the value indicated. These marks will be added to the marks obtained in the written exam, once the student reaches the minimum mark in this exam, which is 45%. (See following section: 'Other comments')	2.5	B3 B4	C14	D1 D2 D9 D10 D16
Long answer tests and development	Written exam in the dates established by the School.	85	— ВЗ	C14	D1 D2 D9 D10 D16

Other comments on the Evaluation

Students resigning continuum assessment (after School aproval) will be evaluated only through the written exam which will be graded with 100% of final mark.

Continuum assessment is composed of sections A, B, C. The maximum mark for continuum assessment (NEC) is 15%, which will be computed from the following equation: NEC (%) = $(2'5 \cdot A) + (2'5 \cdot B) + (C) \cdot A \cdot B$; where A,B: 0-1 and Cmáx= 10% of final mark.

Ethical commitment: it is expected an adequate ethical behaviour of the student. In case of detecting unethical behaviour (copying, plagiarism, unauthorized use of electronic devices, etc.) shall be deemed that the student does not meet the requirements for passing the subject. In this case, the overall rating in the current academic year will be Fail (0.0).

The use of any electronic device for the assessment tests is not allowed unless explicitly authorized. The fact of introducing unauthorized electronic device in the examination room will be considered reason for not passing the subject in the current academic year and will hold overall rating (0.0).

Sources of information

Hibbeler, R., Mechanics of materials,

Hibbeler, R., Mecánica de materiales, Manuel Vázquez, Resistencia de materiales,

González Taboada, J.A. 'Tensiones y deformaciones en materiales elásticos'. Ed. Autor. TOR 620 GON ten; IND T11 18

Recommendations

Other comments

Requirements: To register for this module the student must have passed or be registered for all the modules of the previous year.