Universida_{de}Vigo

Subject Guide 2017 / 2018

AIIIIII			500)	
IDENTIFYIN	-			
Organic che Subject				
Subject	Organic chemistry III			
Code	V11G200V01704			
Study	(*)Grao en			
programme	Química			
Descriptors	ECTS Credits	Choose	Year	Quadmester
	9	Mandatory	4th	1st
Teaching	Spanish			
language				
Department Coordinator	Rodríguez de Lera, Angel			
Lecturers	Álvarez Rodríguez, Rosana			
Lecturers	Fall Diop, Yagamare			
	Rodríguez de Lera, Angel			
	Teijeira Bautista, Marta			
	Tojo Suárez, Emilia			
E-mail	qolera@uvigo.es			
Web	This subject will integrate all the province knowledge	of Organia Chami	ates in particular.	conordina organia
General description	This subject will integrate all the previous knowledge synthesis and his consequences in the creation of new			
description	rethrosynthetic analysis, paying particular attention			
	selectivity (chemo-, regio- and stereoselectivity).		o)oo.p.opood.	
Competenc	ies			
Code				
	ts have demonstrated knowledge and understanding in			
	ion, and is typically at a level that, whilst supported by	advanced textboo	oks, includes some	aspects that will be
	ed by knowledge of the forefront of their field of study			
	ts can apply their knowledge and understanding in a mation, and have competences typically demonstrated thi			
	ns within their field of study	lough devising an	lu sustaining argur	nents and solving
	ts can communicate information, ideas, problems and s	olutions to both s	pecialist and non-	specialist audiences
	ts have developed those learning skills that are necessa			
	gree of autonomy	2		,
	strate knowledge and understanding of essential facts,	concepts, princip	les and theories: t	ypes of chemical
	ns and its main characteristics			
	strate knowledge and understanding of essential facts,	concepts, princip	les and theories: p	properties of aliphatic,
	ic, heterocyclic and organometallic compounds strate knowledge and understanding of essential facts,	conconto princin	loc and theories, n	ature and behavior of
	nal groups in organic molecules	concepts, princip	les and theories: n	lature and benavior of
	strate knowledge and understanding of essential facts,	concents princip	les and theories: s	tructural features of
	al elements and their compounds, including stereochen		ies and theories. s	
	strate knowledge and understanding of essential facts,		les and theories: n	nain synthetic routes
	nic chemistry, including interconversions of functional g			
	atom bonds			
	nowledge and understanding to solve basic problems o		d qualitative nature	e
	e, interpret and synthesize data and chemical informat		lead as 12	
	t oral and written scientific material and scientific argun		ized audience	
	ize and analyze new problems and plan strategies to so chemicals safely, considering their physical and chemic		luding the avaluat	ion of any specific
	sociated with its use	car properties, inc	rouning the evaluat	ion of any specific
	n common laboratory procedures and use instrumentati	ion in synthetic ar	nd analytical work	
	r, by observation and measurement of physical and che			, and document and
	them in a consistent and reliable way			

C28 Interpret data derived from laboratory observations and measurements in terms of their significance and relate them to the appropriate theory

D1	Communicate orally and in writing in at least one of the official languages of the University			
D3	Learn independently			
D4	Search and manage information from different sources			
D5	Use information and communication technologies and manage basic computer tools			
D7	Apply theoretical knowledge in practice			
D8	Teamwork			
D9	Work independently			
D13	Make decisions			
D14	Analyze and synthesize information and draw conclusions			
D15	Evaluate critically and constructively the environment and oneself			
D18	Generate new ideas and show initiative			
Lea	rning outcomes			
Expe	ected results from this subject	Tra	5	nd Learning sults
1 R	ecognise structural elements in organic molecules	Δ2	C2	1ם

1. Recognise structural elements in organic molecules.	A2	C2 C11 C12 C13 C23 C24	D1 D3 D7 D9 D13 D14 D18
2. Propose retrosynthetic sequences of target molecules.	A1 A2 A5	C2 C11 C12 C13 C24	D1 D3 D4 D5 D7 D9 D13 D18
3. Analyse alternative retrosynthetic proposals.	A1 A2 A5	C2 C10 C11 C12 C13 C20 C24	D1 D3 D4 D5 D7 D9 D13 D18
4. Design synthetic sequences to target molecules.	A1 A2 A5	C2 C10 C11 C12 C13 C20	D1 D3 D4 D5 D7 D9 D13 D18
5. Value the use of structure-simplifying reactions.	A1 A2 A5	C2 C10 C11 C12 C13 C20 C24	D1 D3 D4 D7 D9 D13 D14 D18
6. Recognise relationships between functional groups of target molecules.	A1 A2 A5	C2 C10 C11 C12 C13 C20 C24	D1 D3 D4 D7 D9 D13 D18

7. Use properly the functional groups interconversions.	A1 A2 A5	C2 C10 C11 C12 C13 C20 C24	D1 D3 D4 D5 D7 D9 D13 D14 D18
8. Propose synthesis of carbocyclic and heterocyclic compounds.	A1 A2 A5	C2 C10 C11 C12 C13 C20 C24 C25 C26 C27 C28	D1 D3 D4 D7 D9 D13 D14 D18
9. Know the reactivity of heterocyclic compounds.	A1 A2 A5	C2 C10 C11 C12 C13 C20 C24 C26 C27 C28	D1 D3 D4 D7 D9 D13 D14 D18
10. Know the reactions that can provide selectivity (chemo-, regio- and stereoselectivity) in chemical transformations.	A1 A2 A5	C2 C10 C11 C12 C13 C19 C20 C24	D1 D3 D4 D5 D7 D8 D9 D13 D14 D18
11. Handle appropriately the disconnections between unsaturated fragments.	A1 A2 A5	C2 C10 C11 C12 C13 C20 C24	D1 D3 D4 D5 D7 D9 D13 D14 D18
12. Evaluate and propose the use of protective groups in organic synthesis.	A1 A2 A5	C2 C10 C11 C12 C13 C20 C24	D1 D3 D4 D7 D9 D13 D14 D18
13. Recognise and value the importance of organic synthesis in the advancement of society.	A2 A4 A5	C23	D15
Contents Topic			

1. THE DESIGN OF ORGANIC SYNTHESIS.	1.1. Introduction to target-oriented synthesis.
RETROSINTHETIC ANALYSIS	1.2. Rethrosynthetic analysis. The synthon approach. Transforms and
	rethrons. Strategic disconnections. The synthesis tree.
	i. Preliminary evaluation.
	ii. Simplifying transforms. iii. Powerful transforms.
	iv. Interconversion, addition and removal of functional groups.
	1.3. Computer-based synthetic strategies.
2. CRITERIA OF SELECTION OF DISCONNECTIONS	2.1. One- and two-group C-X disconnections (1,n).
	i. Synthons snd synthetic equivalents.
	ii. Alternate polarities.
	iii. Inversion of polarity.
	iv. Functional groups interconversions.
	v. Addition and removal of functional groups.
	2.2. One- and two-group C-C disconnections (1,n).
	i. One-group C-C disconnections.
	ii. (1,n) C-C disconnections of difuncionalized compounds.2.3. Tactics of skeletal transformations. Rearrangements and
	fragmentations.
3. FUNCTIONAL GROUPS INTERCONVERSIONS	3.1. Interconversion of functional groups by substitution, addition and
	elimination.
	3.2. Oxidation reactions.
	i. Transition metals (*Cr and *Mn).
	ii. Methods based in the generation of "activated DMSO".
	iii. Hypervalent iodine reagents.
	iv. Olefin epoxidation and dihydroxylation.
	3.3. Reduction reactions.
4. CHEMOSELECTIVITY. PROTECTIVE GROUPS IN ORGANIC SYNTHESIS	4.1. Strategies for the selection of protective groups: orthogonal or of modulated sensitivity .
ORGANIC STRITTESIS	4.2. Description of protective groups.
	i. Sensitive to acids or bases.
	ii. Sensitive to fluoride.
	iii. Sensitive to reduction and oxidation reagents .
	iv. Other protective groups.
5. STEREOCHEMICAL STRATEGIES .	5.1. Description of Stereochemistry.
STEREOSELECTIVITY	i. Symmetry and chirality. Stereogenic units.
	ii. Topicity.
	iii. Relative configuration. Descriptors.5.2. *Stereochemistry in chemical reactions.
	i. Product selectivity.
	II. Simple- and induced-distereoselectivity.
	ii. Simple- and induced-distereoselectivity. 5.3. Disconnections based in chiral fragments.
6. DISCONNECTIONS OF UNSATURATED	 ii. Simple- and induced-distereoselectivity. 5.3. Disconnections based in chiral fragments. 6.1. Stereoselective olefin synthesis .
6. DISCONNECTIONS OF UNSATURATED COMPOUNDS	5.3. Disconnections based in chiral fragments.6.1. Stereoselective olefin synthesis .i. Carbanions stabilised by phosphorous: Wittig and HWE reactions.
	5.3. Disconnections based in chiral fragments.6.1. Stereoselective olefin synthesis .i. Carbanions stabilised by phosphorous: Wittig and HWE reactions.ii. Carbanions stabilised by silicon: Peterson reaction.
	 5.3. Disconnections based in chiral fragments. 6.1. Stereoselective olefin synthesis . i. Carbanions stabilised by phosphorous: Wittig and HWE reactions. ii. Carbanions stabilised by silicon: Peterson reaction. iii. Carbanions stabilised by sulphur: Julia reaction.
	 5.3. Disconnections based in chiral fragments. 6.1. Stereoselective olefin synthesis . i. Carbanions stabilised by phosphorous: Wittig and HWE reactions. ii. Carbanions stabilised by silicon: Peterson reaction. iii. Carbanions stabilised by sulphur: Julia reaction. iv. Claisen rearrangement.
	 5.3. Disconnections based in chiral fragments. 6.1. Stereoselective olefin synthesis . i. Carbanions stabilised by phosphorous: Wittig and HWE reactions. ii. Carbanions stabilised by silicon: Peterson reaction. iii. Carbanions stabilised by sulphur: Julia reaction. iv. Claisen rearrangement. v. Olefin metathesis.
	 5.3. Disconnections based in chiral fragments. 6.1. Stereoselective olefin synthesis . i. Carbanions stabilised by phosphorous: Wittig and HWE reactions. ii. Carbanions stabilised by silicon: Peterson reaction. iii. Carbanions stabilised by sulphur: Julia reaction. iv. Claisen rearrangement. v. Olefin metathesis. 6.2. Palladium-catalyzed reactions.
	 5.3. Disconnections based in chiral fragments. 6.1. Stereoselective olefin synthesis . i. Carbanions stabilised by phosphorous: Wittig and HWE reactions. ii. Carbanions stabilised by silicon: Peterson reaction. iii. Carbanions stabilised by sulphur: Julia reaction. iv. Claisen rearrangement. v. Olefin metathesis. 6.2. Palladium-catalyzed reactions. i. Heck reaction.
	 5.3. Disconnections based in chiral fragments. 6.1. Stereoselective olefin synthesis . i. Carbanions stabilised by phosphorous: Wittig and HWE reactions. ii. Carbanions stabilised by silicon: Peterson reaction. iii. Carbanions stabilised by sulphur: Julia reaction. iv. Claisen rearrangement. v. Olefin metathesis. 6.2. Palladium-catalyzed reactions. i. Heck reaction. ii. Stille, Negishi and Suzuki cross-coupling.
COMPOUNDS	 5.3. Disconnections based in chiral fragments. 6.1. Stereoselective olefin synthesis . Carbanions stabilised by phosphorous: Wittig and HWE reactions. Carbanions stabilised by silicon: Peterson reaction. Carbanions stabilised by sulphur: Julia reaction. Claisen rearrangement. Olefin metathesis. Peterson. Heck reaction. Stille, Negishi and Suzuki cross-coupling. 7.1. Formation of saturated carbocyclic and heterocyclic compounds.
COMPOUNDS 7. FORMATION AND REACTIVITY OF CYCLIC	 5.3. Disconnections based in chiral fragments. 6.1. Stereoselective olefin synthesis . Carbanions stabilised by phosphorous: Wittig and HWE reactions. Carbanions stabilised by silicon: Peterson reaction. Carbanions stabilised by sulphur: Julia reaction. Carbanions stabilised by sulphur: Julia reaction. Claisen rearrangement. Olefin metathesis. Peterson reaction. Heck reaction. Stille, Negishi and Suzuki cross-coupling. 7.1. Formation of saturated carbocyclic and heterocyclic compounds. Cyclization reactions. The Thorpe-Ingold effect. Baldwin Rules.
COMPOUNDS 7. FORMATION AND REACTIVITY OF CYCLIC	 5.3. Disconnections based in chiral fragments. 6.1. Stereoselective olefin synthesis . Carbanions stabilised by phosphorous: Wittig and HWE reactions. Carbanions stabilised by silicon: Peterson reaction. Carbanions stabilised by sulphur: Julia reaction. Carbanions stabilised by sulphur: Julia reaction. Claisen rearrangement. Olefin metathesis. Palladium-catalyzed reactions. Heck reaction. Stille, Negishi and Suzuki cross-coupling. 7.1. Formation of saturated carbocyclic and heterocyclic compounds. Cyclization reactions. The Thorpe-Ingold effect. Baldwin Rules. Formation of carbocyclic compounds.
COMPOUNDS 7. FORMATION AND REACTIVITY OF CYCLIC	 5.3. Disconnections based in chiral fragments. 6.1. Stereoselective olefin synthesis . Carbanions stabilised by phosphorous: Wittig and HWE reactions. Carbanions stabilised by silicon: Peterson reaction. Carbanions stabilised by sulphur: Julia reaction. Carbanions stabilised by sulphur: Julia reaction. Claisen rearrangement. Olefin metathesis. Palladium-catalyzed reactions. Heck reaction. Stille, Negishi and Suzuki cross-coupling. 7.1. Formation of saturated carbocyclic and heterocyclic compounds. Cyclization reactions. The Thorpe-Ingold effect. Baldwin Rules. Formation of carbocyclic compounds. 7.2. Formation of heterocyclic compounds.
COMPOUNDS 7. FORMATION AND REACTIVITY OF CYCLIC	 5.3. Disconnections based in chiral fragments. 6.1. Stereoselective olefin synthesis . Carbanions stabilised by phosphorous: Wittig and HWE reactions. Carbanions stabilised by silicon: Peterson reaction. Carbanions stabilised by sulphur: Julia reaction. Carbanions stabilised by sulphur: Julia reaction. Claisen rearrangement. Olefin metathesis. Palladium-catalyzed reactions. Heck reaction. Stille, Negishi and Suzuki cross-coupling. 7.1. Formation of saturated carbocyclic and heterocyclic compounds. Cyclization reactions. The Thorpe-Ingold effect. Baldwin Rules. Formation of carbocyclic compounds. (3+2) Cycloadditions.
COMPOUNDS 7. FORMATION AND REACTIVITY OF CYCLIC	 5.3. Disconnections based in chiral fragments. 6.1. Stereoselective olefin synthesis . Carbanions stabilised by phosphorous: Wittig and HWE reactions. Carbanions stabilised by sulphor: Peterson reaction. Carbanions stabilised by sulphur: Julia reaction. Carbanions stabilised by sulphur: Julia reaction. Claisen rearrangement. Olefin metathesis. Palladium-catalyzed reactions. Heck reaction. Stille, Negishi and Suzuki cross-coupling. 7.1. Formation of saturated carbocyclic and heterocyclic compounds. Cyclization reactions. The Thorpe-Ingold effect. Baldwin Rules. Formation of carbocyclic compounds. (3+2) Cycloadditions. Condensation of dicarbonyl compounds.
COMPOUNDS 7. FORMATION AND REACTIVITY OF CYCLIC	 5.3. Disconnections based in chiral fragments. 6.1. Stereoselective olefin synthesis . Carbanions stabilised by phosphorous: Wittig and HWE reactions. Carbanions stabilised by sulphor: Peterson reaction. Carbanions stabilised by sulphur: Julia reaction. Carbanions stabilised by sulphur: Julia reaction. Claisen rearrangement. Olefin metathesis. Palladium-catalyzed reactions. Heck reaction. Stille, Negishi and Suzuki cross-coupling. 7.1. Formation of saturated carbocyclic and heterocyclic compounds. Cyclization reactions. The Thorpe-Ingold effect. Baldwin Rules. Formation of carbocyclic compounds. (3+2) Cycloadditions. Condensation of dicarbonyl compounds. 7.3. Properties and reactivity of aromatic heterocyclic compounds.
COMPOUNDS 7. FORMATION AND REACTIVITY OF CYCLIC COMPOUNDS. TOPOLOGICAL STRATEGIES	 5.3. Disconnections based in chiral fragments. 6.1. Stereoselective olefin synthesis . Carbanions stabilised by phosphorous: Wittig and HWE reactions. Carbanions stabilised by silicon: Peterson reaction. Carbanions stabilised by sulphur: Julia reaction. Carbanions stabilised by sulphur: Julia reaction. Claisen rearrangement. V. Olefin metathesis. Palladium-catalyzed reactions. Heck reaction. Stille, Negishi and Suzuki cross-coupling. 7.1. Formation of saturated carbocyclic and heterocyclic compounds. Cyclization reactions. The Thorpe-Ingold effect. Baldwin Rules. Formation of carbocyclic compounds. (3+2) Cycloadditions. Condensation of dicarbonyl compounds. 7.3. Properties and reactivity of aromatic heterocyclic compounds. 7.4. Topological strategies in Retrosynthetic Analysis.
COMPOUNDS 7. FORMATION AND REACTIVITY OF CYCLIC COMPOUNDS. TOPOLOGICAL STRATEGIES LAB EXPERIMENT 1. Preparation of a-D-	 5.3. Disconnections based in chiral fragments. 6.1. Stereoselective olefin synthesis . Carbanions stabilised by phosphorous: Wittig and HWE reactions. Carbanions stabilised by sulphor: Peterson reaction. Carbanions stabilised by sulphur: Julia reaction. Carbanions stabilised by sulphur: Julia reaction. Claisen rearrangement. Olefin metathesis. Palladium-catalyzed reactions. Heck reaction. Stille, Negishi and Suzuki cross-coupling. 7.1. Formation of saturated carbocyclic and heterocyclic compounds. Cyclization reactions. The Thorpe-Ingold effect. Baldwin Rules. Formation of carbocyclic compounds. (3+2) Cycloadditions. Condensation of dicarbonyl compounds. 7.3. Properties and reactivity of aromatic heterocyclic compounds.
COMPOUNDS 7. FORMATION AND REACTIVITY OF CYCLIC COMPOUNDS. TOPOLOGICAL STRATEGIES LAB EXPERIMENT 1. Preparation of a-D- glucopyranoside pentaacetate	 5.3. Disconnections based in chiral fragments. 6.1. Stereoselective olefin synthesis . Carbanions stabilised by phosphorous: Wittig and HWE reactions. Carbanions stabilised by silicon: Peterson reaction. Carbanions stabilised by sulphur: Julia reaction. Carbanions stabilised by sulphur: Julia reaction. Claisen rearrangement. V. Olefin metathesis. Palladium-catalyzed reactions. Heck reaction. Stille, Negishi and Suzuki cross-coupling. 7.1. Formation of saturated carbocyclic and heterocyclic compounds. Cyclization reactions. The Thorpe-Ingold effect. Baldwin Rules. Formation of carbocyclic compounds. (3+2) Cycloadditions. Condensation of dicarbonyl compounds. 7.3. Properties and reactivity of aromatic heterocyclic compounds. 7.4. Topological strategies in Retrosynthetic Analysis.
COMPOUNDS 7. FORMATION AND REACTIVITY OF CYCLIC COMPOUNDS. TOPOLOGICAL STRATEGIES LAB EXPERIMENT 1. Preparation of a-D-	 5.3. Disconnections based in chiral fragments. 6.1. Stereoselective olefin synthesis . Carbanions stabilised by phosphorous: Wittig and HWE reactions. Carbanions stabilised by silicon: Peterson reaction. Carbanions stabilised by sulphur: Julia reaction. Carbanions stabilised by sulphur: Julia reaction. Claisen rearrangement. Claisen rearrangement. Olefin metathesis. Palladium-catalyzed reactions. Heck reaction. Stille, Negishi and Suzuki cross-coupling. 7.1. Formation of saturated carbocyclic and heterocyclic compounds. Cyclization reactions. The Thorpe-Ingold effect. Baldwin Rules. Formation of carbocyclic compounds. (3+2) Cycloadditions. Condensation of dicarbonyl compounds. T.3. Properties and reactivity of aromatic heterocyclic compounds. A. Topological strategies in Retrosynthetic Analysis.
COMPOUNDS 7. FORMATION AND REACTIVITY OF CYCLIC COMPOUNDS. TOPOLOGICAL STRATEGIES LAB EXPERIMENT 1. Preparation of a-D-glucopyranoside pentaacetate LAB EXPERIMENT 2. Preparation of b-D-	 5.3. Disconnections based in chiral fragments. 6.1. Stereoselective olefin synthesis . Carbanions stabilised by phosphorous: Wittig and HWE reactions. Carbanions stabilised by silicon: Peterson reaction. Carbanions stabilised by sulphur: Julia reaction. Carbanions stabilised by sulphur: Julia reaction. Claisen rearrangement. Claisen rearrangement. Olefin metathesis. Palladium-catalyzed reactions. Heck reaction. Stille, Negishi and Suzuki cross-coupling. 7.1. Formation of saturated carbocyclic and heterocyclic compounds. Cyclization reactions. The Thorpe-Ingold effect. Baldwin Rules. Formation of carbocyclic compounds. (3+2) Cycloadditions. Condensation of dicarbonyl compounds. T.3. Properties and reactivity of aromatic heterocyclic compounds. A. Topological strategies in Retrosynthetic Analysis.
COMPOUNDS 7. FORMATION AND REACTIVITY OF CYCLIC COMPOUNDS. TOPOLOGICAL STRATEGIES LAB EXPERIMENT 1. Preparation of a-D-glucopyranoside pentaacetate LAB EXPERIMENT 2. Preparation of b-D-glucopyranoside pentaacetate LAB EXPERIMENT 3. Reactivity of dimethylsulfoxonium methylide with conjugated	 5.3. Disconnections based in chiral fragments. 6.1. Stereoselective olefin synthesis . Carbanions stabilised by phosphorous: Wittig and HWE reactions. Carbanions stabilised by silicon: Peterson reaction. Carbanions stabilised by sulphur: Julia reaction. Carbanions stabilised by sulphur: Julia reaction. Claisen rearrangement. Olefin metathesis. Palladium-catalyzed reactions. Heck reaction. Stille, Negishi and Suzuki cross-coupling. 7.1. Formation of saturated carbocyclic and heterocyclic compounds. Cyclization reactions. The Thorpe-Ingold effect. Baldwin Rules. Formation of carbocyclic compounds. (3+2) Cycloadditions. Condensation of dicarbonyl compounds. 7.3. Properties and reactivity of aromatic heterocyclic compounds. T.4. Topological strategies in Retrosynthetic Analysis. One session
COMPOUNDS 7. FORMATION AND REACTIVITY OF CYCLIC COMPOUNDS. TOPOLOGICAL STRATEGIES LAB EXPERIMENT 1. Preparation of a-D-glucopyranoside pentaacetate LAB EXPERIMENT 2. Preparation of b-D-glucopyranoside pentaacetate LAB EXPERIMENT 3. Reactivity of dimethylsulfoxonium methylide with conjugated and nonconjugated carbonyl compounds:	 5.3. Disconnections based in chiral fragments. 6.1. Stereoselective olefin synthesis . Carbanions stabilised by phosphorous: Wittig and HWE reactions. Carbanions stabilised by silicon: Peterson reaction. Carbanions stabilised by sulphur: Julia reaction. Carbanions stabilised by sulphur: Julia reaction. Claisen rearrangement. Olefin metathesis. Palladium-catalyzed reactions. Heck reaction. Stille, Negishi and Suzuki cross-coupling. 7.1. Formation of saturated carbocyclic and heterocyclic compounds. Cyclization reactions. The Thorpe-Ingold effect. Baldwin Rules. Formation of carbocyclic compounds. (3+2) Cycloadditions. Condensation of dicarbonyl compounds. 7.3. Properties and reactivity of aromatic heterocyclic compounds. T.4. Topological strategies in Retrosynthetic Analysis. One session
COMPOUNDS 7. FORMATION AND REACTIVITY OF CYCLIC COMPOUNDS. TOPOLOGICAL STRATEGIES LAB EXPERIMENT 1. Preparation of a-D-glucopyranoside pentaacetate LAB EXPERIMENT 2. Preparation of b-D-glucopyranoside pentaacetate LAB EXPERIMENT 3. Reactivity of dimethylsulfoxonium methylide with conjugated	 5.3. Disconnections based in chiral fragments. 6.1. Stereoselective olefin synthesis . Carbanions stabilised by phosphorous: Wittig and HWE reactions. Carbanions stabilised by silicon: Peterson reaction. Carbanions stabilised by sulphur: Julia reaction. Carbanions stabilised by sulphur: Julia reaction. Claisen rearrangement. Olefin metathesis. Palladium-catalyzed reactions. Heck reaction. Stille, Negishi and Suzuki cross-coupling. 7.1. Formation of saturated carbocyclic and heterocyclic compounds. Cyclization reactions. The Thorpe-Ingold effect. Baldwin Rules. Formation of carbocyclic compounds. (3+2) Cycloadditions. Condensation of dicarbonyl compounds. 7.3. Properties and reactivity of aromatic heterocyclic compounds. T.4. Topological strategies in Retrosynthetic Analysis. One session

LAB EXPERIMENT 4. Microwave-assisted Diels-	One session
Alder reaction	
LAB EXPERIMENT 5. Preparation of an Ionic	Two sessions
Liquid. Application in the synthesis of coumarines	5
LAB EXPERIMENT 6. Suzuki reaction in water	One session
LAB EXPERIMENT 8. Total synthesis of a natural	Four sessions
product: caffeic acid phenethyl ester (CAPE)	

Planning

	Class hours	Hours outside the classroom	Total hours
Seminars	26	49	75
Laboratory practises	45.5	32.5	78
Master Session	13	17	30
Short answer tests	3	27	30
Long answer tests and development	2	10	12
*The information in the planning table is for g	juidance only and does no	ot take into account the het	erogeneity of the students.

Methodologies	
	Description
Seminars	In this activity, which is scheduled to take place twice a week, the most complex topics of the subject will be discussed, and the exercises and problems previously proposed by the teaching staff will be solved.
Laboratory practises	Each student will plan and execute the corresponding lab experiments in sessions lasting 3.5 hours. The students will be provided with the explanation of the lab session by the teaching staff. All the observations, calculations and notes for every experiment will be collected in a lab notebook, which will also include the discussion of the questions posed in the experiment description as well as the spectroscopic characterization of the synthesized compounds.
Master Session	The teaching staff will explain the general contents of the course paying particular attention to those considered key topics and of the greater difficulty. In anticipation of each master session, all the handouts and presentations will be made available in the TEMA teaching platform for downloading by the students.

Methodologies	Description
Master Session	The teaching staff will devote the necessary time to solve the requests and questions raised by the students related to the course syllabus, informing beforehand about his/her availability.
Seminars	The teaching staff will devote the necessary time to solve the requests and questions raised by the students related to the course syllabus, informing beforehand about his/her availability.
Laboratory practises	The teaching staff will devote the necessary time to solve the requests and questions raised by the students related to the laboratory practice, paticularly in the lab sessions and beforhand.
Tests	Description
Short answer tests	The teaching staff will devote the necessary time to solve the requests and questions raised by the students related to the short answer tests, informing beforehand about his/her availability. In addition, short answer test exams from previous years will be solved in seminars before the official tests take place.
Long answer tests and development	The teaching staff will devote the necessary time to solve the requests and questions raised by the students related to the long answer tests, informing beforehand about his/her availability. In addition, long answer test exams from previous years will be solved in seminars before the official tests take place.

Description	Qualification Training and
·	Learning
	Results

Seminars	The resolution of problems and questions posed in the seminar classes, as well as the homework carried out by the students in those tasks of personal work entrusted by the teachers will be valued. Results of the learning: All the indicated, since the seminars will take place along the course.	20	A2 A4		D4 D5 D7 D8 D9 D13 D14 D15
Laboratory practises	 1 The work carried out in the laboratory: the assistance to each one of the sessions is compulsory. The attitude and skill of the student in the laboratory and the interpretation of the mechanisms and spectra will be valued (33 % of the final note). 2 The laboratory notebook (27 % of the final note). 3 Written exam: it will consist on theoretical and practical questions related to the lab experiments. It will take place in the official dates established by the Faculty (40 % of the final note). To pass the lab course it is mandatory to have passed each one of the three parts evaluated. Those students who passed the lab course in the academic year 2014-2015 are entitled to keep that grade in the present academic year. In the extraordinary exam the student will answer the written examination and will deliver a new laboratory notebook if required, keeping the qualifications obtained during the course in the others parts of the subject. Results of the learning: 1. Recognise structural elements in the organic molecules. 2. Design alternative synthetic sequences. 3. Handle reactions of functional groups interconversions. 4. Propose synthesis of carbo- and heterocyclic molecules. 5. Recognise the importance of organic synthesis to the advancement of 	30	A2	C25 C26 C27 C28	D18
Short answer test	society. s A short answer exam will be carried out (10%). Results of the learning: 1. Recognise structural elements of organic molecules. 2. Propose retrosynthetic sequences. 3. Analyse alternative retrosynthetic proposals. 4. Value the use of structurally-simplifying reactions. 5. Recognise relationships between functional groups. 6. Use properly functional groups interconversion reactions.	10	A2	C2 C10 C11 C12 C13 C20 C24	D4 D5 D7 D9 D13 D14
	 A global proof for the evaluation of the competitions acquired in the subject. For passing the subject the students will have to obtain a minimum of 50% in the written proofs (short and long answer). Therefore, the qualification of the remaining parts will only be added when the grade obtained in overall written proofs is equal or higher than two and a half points. Results of the learning: Recognise structural elements of organic molecules. Propose retrosynthetic sequences. Analyse alternative retrosynthetic proposals. Value the use of structurally-simplifying reactions. Recognise relationships between functional groups. Use properly functional groups interconversion reactions. Design synthetic sequences. Know the reactivity of heterocyclic compounds. Know selective reactions. Propose disconnections in unsaturated compounds. Know the use of protective groups in organic synthesis. 	40	A2 A4	C24 C25	D4 D5 D7 D8

Other comments on the Evaluation

The participation of the students in any of the acts of evaluation of the subject will involve that they purchase the condition of "presented" and, therefore, they will have assigned a qualification. Acts of evaluation are considered the assistance to the classes of laboratory (three or but sessions), the realisation of the written exams and the handling of a minimum of 25% of

the homework assigned by the teaching staff.

Evaluation of the July call:

>1) Grade obtained by the students during the course: maximum of 4 points, divided in the qualification obtained by the students along the course in the resolution of the problems, homework, etc (maximum of 1 point) and the realisation of the laboratory exams (maximum of 3 points).

2) Work carried out by the students: maximum of 1,5 points

for the resolution and handling of the exercises proposed by the teaching staff after the evaluation of January, that will be oriented to the acquisition of the necessary knowledge to pass the matter. This work will be handled in advance to the official date of the exam.

3) Written Tests: maximum of 4,5 points, which will evaluate the knowledge of the matter.

Sources of information	
Basic Bibliography	
Complementary Bibliography	
Warren, S.; Wyatt, P., Organic Synthesis: The Disconnection Approach, 2nd, Wiley, 2008	
Wyatt, P.; Warren, S., Organic Synthesis: Strategy and Control, 1st, Wiley, 2008	
Zweifel, G. S.; Nantz, M. H., Modern Organic Synthesis: An Introduction, 1st, W H Freeman, 2007	
Clayden, J.; Greeves, N.; Warren, S., Organic Chemistry, 2nd, Oxford University Press, 2012	
Starkey, L. S., Introduction to strategies for organic synthesis, 1st, Wiley, 2012	

Recommendations Subjects that continue the syllabus

Pharmaceutical chemistry/V11G200V01903

Subjects that it is recommended to have taken before

Chemistry, physics and biology: Integrated laboratory I/V11G200V01103 Chemistry, physics and geology: Integrated laboratory II/V11G200V01202 Organic chemistry I/V11G200V01304 Structural Determination/V11G200V01501 Organic chemistry II/V11G200V01504