Universida_{de}Vigo

Subject Guide 2017 / 2018

			&####///</th><th></th><th></th></tr><tr><th>IDENTIFYIN</th><th>G DATA</th><th></th><th></th><th></th><th></th></tr><tr><th>Chemistry:</th><th>Chemistry I</th><th></th><th></th><th></th><th></th></tr><tr><td>Subject</td><td>Chemistry:</td><td></td><td></td><td></td><td></td></tr><tr><td></td><td>Chemistry I</td><td></td><td></td><td></td><td></td></tr><tr><td>Code</td><td>V11G200V01105</td><td></td><td></td><td></td><td></td></tr><tr><td>Study</td><td>(*)Grao en</td><td></td><td></td><td></td><td></td></tr><tr><td>programme</td><td>Química</td><td></td><td></td><td></td><td></td></tr><tr><td>Descriptors</td><td>ECTS Credits</td><td>C</td><td>hoose</td><td>Year</td><td>Quadmester</td></tr><tr><td></td><td>6</td><td>B</td><td>asic education</td><td>1st</td><td>1st</td></tr><tr><td>Teaching</td><td>Galician</td><td></td><td></td><td></td><td></td></tr><tr><td>language</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Department</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Coordinator</td><td>Bravo Bernárdez, Jorge</td><td></td><td></td><td></td><td></td></tr><tr><td>Lecturers</td><td>Bravo Bernárdez, Jorge</td><td></td><td></td><td></td><td></td></tr><tr><td></td><td>Tojo Suárez, María Concepción</td><td></td><td></td><td></td><td></td></tr><tr><td>E-mail</td><td>jbravo@uvigo.es</td><td></td><td></td><td></td><td></td></tr><tr><td>Web</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>General</td><td>Subject in the that impart contents of</td><td>General Chemistry.</td><td></td><td></td><td></td></tr><tr><td>description</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Competenci</td><td>es</td><td></td><td></td><td></td><td></td></tr></tbody></table>		

Code

A1 Students have demonstrated knowledge and understanding in a field of study that builds upon their general secondary education, and is typically at a level that, whilst supported by advanced textbooks, includes some aspects that will be informed by knowledge of the forefront of their field of study

- C1 Demonstrate knowledge and understanding of essential facts, concepts, principles and theories: Major aspects of chemical terminology, nomenclature, units and unit conversions.
- C2 Demonstrate knowledge and understanding of essential facts, concepts, principles and theories: types of chemical reactions and its main characteristics

C19 Apply knowledge and understanding to solve basic problems of quantitative and qualitative nature

- D1 Communicate orally and in writing in at least one of the official languages of the University
- D3 Learn independently
- D6 Use mathematics, including error analysis, estimates of orders of magnitude, correct use of units and data representations
- D7 Apply theoretical knowledge in practice
- D9 Work independently
- D12 Plan and manage time properly
- D13 Make decisions
- D14 Analyze and synthesize information and draw conclusions
- D15 Evaluate critically and constructively the environment and oneself

Learning outcomes

Expected results from this subject		Training and Learning			
		Res	sults		
Use mol, empirical and molecular formula. Name binary compounds.	A1	C1	D1		
		C19	D3		
			D6		
			D7		
			D9		
			D12		
			D13		
			D14		
			D15		

Describe the general structure of the atom and the main models. Use the periodic table.	A1	C1 C19	D1 D3 D6 D7 D9 D12 D13 D14 D15
Explain the covalent bond and Lewis structures. Predict the bond polarity. Name and formulate poliatomic ions. Describe the properties of ionic compounds.	A1	C1 C19	D1 D3 D6 D7 D9 D12 D13 D14 D15
Use the RPECV model. Determine the orbitals hybridization in one central atom and the corresponding molecular geometry. Identify sigma and pi bonds. Predict the polarity of molecules. Describe the different types of intermolecular interactions and used them to explain the melting and boiling points.	A1	C1 C19	D1 D3 D6 D7 D9 D12 D13 D14 D15
Adjust simple chemical equations and do stoichiometric calculations. Recognize types of general reactions. Explain neutralization reactions and oxidation-reduction reactions.	A1	C2 C19	D1 D3 D6 D7 D9 D12 D13 D14 D15
Explain the properties of gases. Calculate the quantities of gas reactants and products that take part in chemical reactions. Describe the ideal gases model and compare it with real gases.	A1	C1 C19	D1 D3 D6 D7 D9 D12 D13 D14 D15
Explain the properties of liquids, and the phase transitions that take place between solids, liquid and gases. Perform calculations on the basis of simple unitary cells and the dimensions of atoms and ions. Explain the metallic bonding and interprete the properties of metals, semiconductors and insulating materials.	A1 d	C1 C19	D1 D3 D6 D7 D9 D12 D13 D14 D15
Describe the different forms of energy. Recognise and use the thermodynamic language. Apply th Hess law. Calculate the variations of the different thermodynamic functions in a chemical reaction	eA1	C1 C2 C19	D1 D3 D6 D7 D9 D12 D13 D14 D15

Describe the properties of a system in chemical e the concentrations of reactants and products in s Chatelier principle.	quilibrium. Calculate ystem in chemical eq	the equilibrium constant an uilibrium. Use the Le	dA1	C1 C2 C19	D1 D3 D6 D7
					D9 D12 D13 D14 D15
Explain the properties of water. Predict the solubi reactions. Identify the conjugate base and the con oxidizing and reducing agents in a redox reaction	lity. Describe the role njugate acid. Calculat and balance redox re	of water in the acid-base e the pH. Identify the eactions.	A1	C1 C2 C19	D1 D3 D6 D7
					D7 D9 D12 D13 D14 D15
Define the main concepts of Chemical Kinetics. D Calculate the activation energy and the frequency	etermine the rate law y factor. Explain the c	s and the rate constants. atalytic action.	A1	C1 C2 C19	D1 D3 D6 D7 D9 D12 D13 D14 D15
Contents					
Торіс					
Subject 1. Nature of Chemistry	The matter and its p elements. Concept o Classification. Molect empirical and molect	roperties. Classification of t f mol. Chemical compounds ular mass and mol of a com ular formula.	ne ma . Forn pounc	itter. Ato nulation. J. Determ	ms and nination of
Subject 2. Chemical reactions	Classification. Chemi reactant. Yield.	ical equations. Stoichiometr	ic calo	culations	. Limiting
Subject 3. Gases	Properties of gases. mass of gases. Partia	The atmosphere. Ideal gase al pressures. Real gases.	s law.	Density	and molar
Subject 4. Thermochemistry and the spontaneity of a chemical processes.	Thermochemistry an energy. Transfer of e equations. Hess's lar energy.	d the spontaneity of chemic energy and phase transition w. Entropy and second law	al pro Ther of the	ocesses. mochem rmodyna	Units of ical mics. Gibbs
Subject 5. Chemical equilibrium	Equilibrium constant equilibrium concentr equilibrium constant	: determination and meanir ations. Le Chatelier's princi	ig. Ca ole. G	lculation ibbs enei	of rgy and
Subject 6. Water and chemistry of solutions	Water as a solvent. H solubility. Solubility e autoionization. Ioniza solutions. Redox rea	How substances are solved. equilibrium. Concept of Brör ation constants. Acid-base r ctions. Balance of redox rea	Temp isted eactio ctions	perature a acid-base ons. Hydr 5.	and e. Water olysis. Buffer
Subject 7. Condensed phases	Liquid state. Order ir Phase equilibria. Pha	n liquids. Solid state. Melting ise diagram.) poin	t. Boiling	point.
Subject 8. Chemical kinetics	Reaction rate. Effect Mechanisms of react	of concentration. Rate lawa ion. Catalysis. Thermodyna	ind or mic ar	der of re nd kinetio	action. stability.
Subject 9. The atom	Subatomic particles. Nuclear atom. Chemical elements. Isotopes. Electronic structure of atoms. Electronic configuration. Periodic table. Periodic properties.				
Subject 10. Chemical bonding	Simple covalent bonds and Lewis structures. Multiple covalent bond. Lewis structures and resonance. Polarity of a bond and electronegativity. Coordinated covalent bonds. Ions and ionic compounds.				
Subject 11. Molecular structure	Prediction of molecu Condensed phases for	lar forms: RPECV. Hybridiza ormation. Intermolecular int	tion. N eracti	Molecular ions.	polarity.
Diamaing					
rianility	Class hours	Hours outside the	То	tal hours	
Master Session	26	26	52		
Seminars	26	26	52		

Troubleshooting and / or exercises	0	19	19	
Long answer tests and development	4	14	18	
Short answer tests	2	7	9	

*The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies	
	Description
Master Session	In this kind of sessions the general aspects of the program will be introduced in an structured way. The basics and the more important or difficult to understand aspects will be emphasized. The required material to study the next week will be available through the Tem@ platform. In this case, students are advised to study previously the available material and to consult the recommended bibliography to complete the information. In this way the explanations of the program contents will result in a better academic progress.
Seminars	Two classes a week will be devoted to students solve some of the problems or proposed exercises related with the subject. Some of these exercises or any other proposed by the teacher can be ordered to be qualified. As well as the correct exercises resolution, the suitable use of the language and handle mathematics (including error analysis, correct estimate of magnitude orders, use of units and ways of data presentation) will be valued.
Troubleshooting and / or exercises	The list of problems must be solved by students, with the help, if necessary, of the teacher during seminars or tutorial timetable. These list of problems can be requested in the established date if teacher ask for them. As well as the correct exercises resolution, the suitable use of the language and handle mathematics (including error analysis, correct estimate of magnitude orders, use of units and ways of data presentation) will be valued.

Personalized attention				
Methodologies	Description			
Troubleshooting and / or exercises	The students can consult all type of questions about the subject during the tutorial timetable.			
Seminars	The students can consult all type of questions about the subject during the tutorial timetable.			

Assessment					
	Description	Qualification	ו T	raining	g and
			Lea	arning	Results
Troubleshooting and / or exercises	The attendance (mandatory) to seminars, the involvement of students and the resolution by students of a serie of problems and/o exercises can be valued to monitor the student progress.	25 r	A1	C1 C2 C19	D1 D6 D7 D13 D14 D15
Long answer tests and development	Exams to evaluate the competences that students have acquired. After the lessons and trainning sessions finish, an exam will take place. A minimum score of 4 out of 10 in this exam is needed to take into account the rest of marks in the evaluation.	45	A1	C1 C2 C19	D1 D3 D6 D7 D9 D12 D13 D14
Short answer tests	Students must pass two tests of the contents explained in the magistral sessions and seminars.	30	A1	C1 C2 C19	D1 D3 D6 D7 D9 D12 D13 D14

Other comments on the Evaluation

The final mark in Chemistry I may be the highest mark between the final exam mark and the weighted averaged mark (which is obtained including continuous evaluation).

Call on July:

The mark obtained during the course in the section Troubleshooting and/or exercises is mantained. The exam includes the whole list of topics of the training course. A minimum score of 4,5 out of 10 in this exam is needed to

Sources of information
Basic Bibliography
Chang, R. y Goldsby, K.A., Química , 12, McGraw-Hill, 2017
Complementary Bibliography
Atkins, P y Jones, L, Principios de Química. Los caminos del descubrimiento, 5, Médica Panamericana, 2012
Petrucci, R.H., et al., Química General: principios y aplicaciones modernas, 11, Pearson Educación, 2017
Whitten, K.W. et al., Química , 10, Cengage Learning, 2015
López Cancio, J.A., Problemas de Química. Cuestiones y ejercicios, 1, Prentice-Hall, 2000
Orozco Barrenetxea, C et al., Problemas Resueltos de Química Aplicada, 1, Paraninfo, 2011

Recommendations Subjects that continue the syllabus

Chemistry: Chemistry 2/V11G200V01204

Subjects that are recommended to be taken simultaneously

Biology: Biology/V11G200V01101 Physics: Physics I/V11G200V01102 Mathematics: Mathematics I/V11G200V01104 Chemistry, physics and biology: Integrated laboratory I/V11G200V01103