Guía Materia 2012 / 2013

DATOS IDEI	NTIFICATIVOS				
Modelizació	ón e Simulación Numérica d	le Procesos Termoflu	ıidodinámicos		
Materia	Modelización e				
	Simulación Numérica				
	de Procesos				
	Termofluidodinámicos				
Código	V09M070V01208				
Titulación	Máster Universitario				
	en Enxeñaría Térmica				
Descritores	Creditos ECTS		Sinale	Curso	Cuadrimestre
	4		OP	1	2c
Lingua de	Castelán				
impartición					
Departament	0				
Coordinador/	a				
Profesorado	Martín Ortega, Elena Beatriz				
Correo-e					
Web	http://mastertermica.es				
Descrición	El objetivo de esta materia co	nsiste en adquirir destr	ezas en la modela	ción y simulación r	numérica de procesos
xeral	termofluidodinámicos, orienta				

_					lación
Comp	Atan.	CIDC	α	*****	ISCIAN

de problemas industriales

Código

- A1 Dominar conceptos teóricos avanzados sobre intercambios de masa y energía y sobre dinámica de fluidos, que constituyan una ampliación de la formación básica adquirida en los estudios de grado.
- A2 Utilizar de forma adecuada métodos y herramientas informáticos, fundamentados desde el punto de vista teórico y debidamente contrastados, para el adecuado dimensionado de las instalaciones energéticas.
- A3 Comprender, cuantificar y afrontar el impacto que el desarrollo de la civilización ha tenido sobre el medioambiente.

 Entender la importancia de las energías renovables (solar, eólica, biomasa (), en nuestra sociedad presente y futura
- A4 Saber interpretar correctamente el significado de la sostenibilidad aplicado al sector energético, evaluar su impacto medioambiental y proponer soluciones eficientes de mejora.
- A5 Obtener una visión científico-tecnológica de los métodos actuales de producción de energía y su problemática medioambiental.
- A6 Ser capaz de proponer líneas de investigación novedosas para resolver problemas de eficiencia en sistemas energéticos complejos.
- A7 Ser capaz de investigar en nuevas líneas de investigación para mejorar la eficiencia de los diversos sistemas energéticos.
- A8 Ser capaz de desarrollar, formular y resolver modelos de simulación de diversos sistemas energéticos para su estudio y análisis
- Capacidad para aplicar los conocimientos adquiridos y resolver problemas en entornos nuevos dentro de contextos más amplios relacionados con su área de estudio. Aplicación del diálogo interprofesional y el trabajo en equipo
- B2 Capacidad de integrar conocimientos y enfrentarse a la a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales u éticas vinculadas a la aplicación de sus conocimientos y juicios.
- Que los estudiantes sepan comunicar sus conclusiones (y los conocimientos y razones últimas que las sustentan) a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
- Demostrar una comprensión sistemática de un campo de estudio y el dominio de las habilidades y métodos de investigación relacionados con dicho campo.
- Demostrar la capacidad de concebir, diseñar, poner en práctica y adoptar un proceso sustancial de investigación con seriedad académica y siguiendo el método científico
- B7 Realizar una contribución a través de una investigación original que amplíe las fronteras del conocimiento desarrollando un corpus sustancial, del que parte merezca la publicación referenciada a nivel nacional o internacional. se asegura por tanto que los estudiantes adquieran la capacidad de comunicarse con sus colegas, con la comunidad académica en su conjunto y con la sociedad en general acerca de sus áreas de conocimiento

- B8 B9
- Capacidad para de realizar un análisis crítico, evaluación y síntesis de ideas nuevas y complejas.

 Capacidad de fomentar, en contextos académicos y profesionales, el avance tecnológico, social o cultural dentro de una sociedad basada en el conocimiento.

Competencias de materia Resultados previstos na materia	Tipoloxía	Resultados de
Resultados previstos na materia	Проюхіа	Formación e Aprendizaxe
Conocer los principales modelos de la mecánica de fluidos.	saber	A1
onocci los principales modelos de la mecanica de naldos.	Subci	A2
		A3
		A8
		B1
		B1
		В3
		B4
		B5
		B6
		B7
		B8
	a cabar facar	
ener capacidad de selección de un modelo adecuado para un problema real concreto	saber facer	A1
e cara a la simulación numérica.		A2
		A3
		A4
		A5
		A6
		A7
		A8
		B1
		B1
		B2
		B3
		B4
		B5
		B6
		B7
		B8
omprender las propiedades básicas de los principales modelos y significado físico de	saber	A1
is números adimensionales involucrados.	. Subci	A2
s numeros adimensionales involucidados.		
		A3
		A5
		A7
		A8
		B1
		B1
		B2
		B3
		B4
		B5
		B6
		B7
		B8
onocer los procesos turbulentos, incluyendo los flujos reactivos de combustión, sus	saber	A1
aracterísticas y principales modelos de análisis.		A2
• • •		A3
		A4
		A6
		A7
		A8
		B1
		B1
		B2
		B3
		B4
		B5
		B6
		B7
		B8

Tener la capacidad de simular numéricamente un modelo adecuado para cada tipo de saber facer Α1 flujo. A2 Α3 Α4 Α5 Α6 Α7 Α8 В1 В1 В2 ВЗ В4 В5 В6 В7 В8

Contidos	
Tema	
1. ECUACIONES DE CONSERVACIÓN DE LA MECÁNICA DE FLUIDOS	a. Medios no reactivos i. Adimensionalización de las ecuaciones y significado físico de los principales números adimensionales en la dinámica de fluidos: Mach, Reynolds, Froude, Prandtl, Peclet, Grashof y Nusselt. ii. Principales modelos límite de la dinámica de fluidos. Flujos viscosos compresibles. b. Medios reactivos i. Termoquímica: Equilibrio químico. ii. Cinética química y mecanismos reducidos. iii. Llamas en régimen laminar: de difusión y premezcladas. iv. Generación de NOx y SOx
2. FLUJOS TURBULENTOS	 a. Escala de Kolmogorov. b. Herramientas estadísticas más usadas en turbulencia. c. Ecuación de la energía en turbulencia. d. Principales modelos para flujos turbulentos. e. Introducción a la combustión turbulenta
3. INTRODUCCIÓN A LA COMBUSTIÓN TURBULENTA	a. Mallados b. Métodos de simulación numérica i. FDM ii. FEM iii. FVM iv. Técnicas de integración temporal v. Métodos de aceleración numérica vi. Acoplamiento presión-velocidad
4. SIMULACIÓN NUMÉRICA CON CÓDIGOS COMERCIALES: COMSOL, FLUENT.	 a. Análisis del flujo de calor en un intercambiador de calor con diferentes softwares b. Cálculo aerodinámico con distintos softwares. Comparación de diversos modelos de turbulencia. c. Simulación de la llama de difusión turbulenta en quemador cilíndrico d. Ejemplo de reducción de NOx en catalizador

Planificación			
	Horas na aula	Horas fóra da aula	Horas totais
Resolución de problemas e/ou exercicios	0	18.75	18.75
Traballos tutelados	0	12.5	12.5
Estudos/actividades previos	0	6.25	6.25
Proxectos	0	25	25
Sesión maxistral	35.5	0	35.5
Traballos e proxectos	1	0	1
Observación sistemática	1	0	1

^{*}Os datos que aparecen na táboa de planificación son de carácter orientador, considerando a heteroxeneidade do alumnado.

Metodoloxía docente	
Descrición	

Resolución de problemas e/ou exercicios	Actividad del alumno autónoma y tutorizada
Traballos tutelados	Actividad autónoma del alumno
Estudos/actividades previos	Actividad autónoma del alumno
Proxectos	Actividad autónoma del alumno
Sesión maxistral	Lección magistral

Atención personalizada		
Metodoloxías	Descrición	
Resolución de problemas e/ou exercicios	Se proporciona orientación, apoyo y motivación en el proceso de aprendizaje	
Traballos tutelados	Se proporciona orientación, apoyo y motivación en el proceso de aprendizaje	

Avaliación		
	Descrición	Cualificación
Traballos e proxectos	Presentación/exposición de trabajos	80
Observación sistemática	Observación del trabajo continuo	20

Outros comentarios sobre a Avaliación

Bibliografía. Fontes de información
- Barrero, A. y Pérez-Saborid, M, Fundamentos y aplicaciones de la Mecánica de fluidos , Mc Graw Hill,
Wilcox, D.C., Turbulence Modelling for CFD, DCW Industries,
Glassman, I, Combustion , Addison-Wesley,
Williams, F. A, Combustion Theory , Benjamin/Cummings,
Fluent, Documentación de ayuda del código comercial FLUENT , www.fluent.com,
Blazek, J, Computacional Fluid Dynamics: Principles and Applications, Elsevier,

Recomendacións