Universida_{de}Vigo

Subject Guide 2017 / 2018

			5	ubject Guide 2017 / 2018
IDENTIFYIN				
	gines and turbo-machines			
Subject	Thermal engines			
	and turbo-			
Codo	machines			
Code Study	V09G290V01608 Degree in Energy			
programme	Engineering			
Descriptors	ECTS Credits	Choose	Year	Quadmester
Descriptors	6	Mandatory	3rd	2nd
Teaching	Spanish	Mandatory	510	2110
language	English			
Department				
Coordinator	Patiño Vilas, David			
Lecturers	Martínez Mariño, Sandra			
	Patiño Vilas, David			
	Pérez Orozco, Raquel			
E-mail	patinho@uvigo.es			
Web	http://faitic.uvigo.es/			
General	Increase the knowledge of internal combustion engine	es and turbomach	ninery (heat eng	jines)
description				
Competenc	ies			
Code				
	knowledge of the basics of fluid-mechanic systems and	l machines		
	o design electrical power plants			
	knowledge of thermal engineering			
	o apply knowledge of thermal motors and machines to			eering
	o apply environmental technologies to problems that ca			
	y to interrelate all the acquired knowledge and interpre	t it as componen	ts in a body of l	knowledge with a clear
	re and strong internal coherence		d th the	Line and a data from the later
	e and develop practical solutions, which develop suitable nena and situations that arise as everyday realities in er		d on theoretica	i knowledge, for problem
	hat sources are available for ongoing and continual upo		formation roou	irad to undertake their
	ith access to all the current and future tools for seeking			
	ial changes		adapting it in t	
	nd handle legislation applicable to the sector, know the	social and busin	ess environmen	t and know how to work
togethe	r with the Administration and use acquired knowledge t	o draw up engin	eering projects	and develop any of the
	of professional work required	s and ap engin		
	y to organise, interpret, assimilate, create and manage	all the information	on needed to or	ganise their work,
handlin	g the I.T., mathematical, physical and other tools requir	ed		
D8 Conceiv	e engineering within a framework of sustainable develo	pment with an a	wareness of en	vironmental issues

D8 Conceive engineering within a framework of sustainable development with an awareness of environmental issues

Learning outcomes Expected results from this subject Training and Learning Results Know the technological basis supporting the latest research into thermal motors. C21 D5 C29 D6 C35 D7 C36 D8 Know the types, operation and application of thermal motors and machines C21 C23 C29 C35 C36

Solve problems derived from the scope of the subject both autonomously and in collaboration with	I	D1
others		D3
		D5
Give explanations about the environmental implications and sustainability of a particular problem		D6
		D7
		D8
Solve problems that are inherent to thermal machines	C21	
	C23	
	C29	
	C36	
Carry out experimental analysis to assess the typical operational curves for thermal motors at full	C21	D5
load.	C23	D7
	C29	
Write calculations and test reports that justify results and lead to conclusions		D1
		D3
		D5
		D6
		D7
		D8

Contents	
Торіс	
1. Introduction to Heat Engines	1.1 Presentation of the subject
	1.2 Basic definitions
2. Characteristics of the Internal Combustion	2.1 Classification of the thermal engines
Engines (ICE)	2.2 Fundamentals of the Internal Combustion Engines (ICE)
	2.3 Parts of the ICEs
	2.4 Nomenclature and basic parameters
3. Air Cycle	3.1 Thermodynamic Cycle
-	3.2 The Otto Cycle
	3.3 The Limited Pressure Cycle
	3.4 The Diesel Cycle
4. The Real Cycle	4.1 The mixture of real gas
,	4.2 Evolution of the adiabatic coefficient
	4.3 Pumping Loss
	4.4 Combustion Loss
	4.5 Expansion Loss
	4.6 Quality Factor of the Cycle
5. Gas exchange processes in 4 Stroke Engines	5.1 The Valve Train
5	5.2 The Volumetric Efficiency
	5.3 Pump loss
	5.4 Timing
	5.5 Variable Distribution Systems
	5.6 Dynamic Air admition systems
6. Scavenging in 2 Stroke Engines	6.1 Ideal Scavenging
5 5 5	6.2 Scavenging process
	6.3 Admision systems
	6.4 Acoustic wave enhancement
7. Supercharging	7.1 Advantages of the supercharging in ICE
	7.2 Volumetric superchargers
	7.3 Turbochargers
	7.4 Intercooler
	7.5 Dynamic Systems (Comprex)
8. Combustion in Spark Ignition Engines (SIE)	8.1 Stoichiometry of SIE
	8.2 Characteristic Curves
	8.3 The Carburettor
	8.4 Injection System
	8.5 Closed loop (lambda control)
	8.6 Combustion phases in SI
	8.7 Abnormal Combustion: knock
	8.8 Abnormal Combustion: superficial ignition
	8.9 Combustion chambers
	8.10 Influential factors in SI combustion

9. Combustion in Compression Ignition Engines (CIE)	 9.1 Introduction 9.2 Phases of CI combustion 9.3 Influential Factors 9.4 Types of injection 9.5 Systems of injection 9.6 Future tendencies
10. Thermal turbomachinery	10.1 Brayton Cycle 10.2 Parts of the Gas Turbine 10.3 Compressors 10.4 Combustion Chamber 10.5 Turbine 10.6 Architecture
11. Auxiliar Circuits	11.1 Refrigeration System 11.2 Lubricacion System
12. Pollutant Emissions	12.1 SI Emissions 12.2 Diesel Emissiones 12.3 Regulations (EURO) 12.4 Catalytic converter 12.5 EGR systems 12.6 Lambda
13. Other heat engines	13.1 Rotary Engine (Wankel)13.2 Stirling Engine13.3 Modern Tendencies (HCCI, hybrids)13.4 New Fuels

Planning				
	Class hours	Hours outside the classroom	Total hours	
Master Session	25.5	47.5	73	
Laboratory practises	18	10	28	
Tutored works	1	20	21	
Troubleshooting and / or exercises	8	20	28	
*The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.				

Methodologies	
	Description
Master Session	Theoretical lectures in large groups
Laboratory practises	Practical experiences in laboratory
Tutored works	Supervision of a report related with the subject
Troubleshooting and / o	or Resolution of practical exercices
exercises	

Personalized attention	
Methodologies	Description
Master Session	Theory lectures in large groups. The teacher will be also available to solve doubts during his personal tutor sessions and via email.
Laboratory practises	The students work in smaller groups (15-20 students). The division in subgroups allows a more personalised attention and a better utilisation of the laboratory resources.
Tutored works	C groups are small groups (5-10 students) used to follow-up the preparation of the general report for the subject and exercises.
Troubleshooting and / or exercises	Some examples and common exercices will be solved during C groups. The teacher will be also available to solve some doubts during his personal tutor sessions and via email.

Assessment				
	Description	Qualification	Traini	ng and
			Learnin	g Results
Master Session	Short answer tests and quizs	60-70	C21	D1
			C23	D3
	LEARNING RESULTS:		C29	D5
	All the learning results are evaluated with this		C35	D6
	methodology		C36	D7
				D8

Tutored works	Text and oral presentation of the final report	15	C21 C23	D1 D3
	LEARNING RESULTS:		C23	D5
	All the learning results are evaluated with this		C35	D6
	methodology		C36	D7
				D8
Troubleshooting and / or	Problem (exercises) resolution and quizs	25-40	C21	D1
exercises	· · · ·		C23	D3
	LEARNING RESULTS:		C29	D5
	All the learning results are evaluated with this		C35	D6
	methodology		C36	D7
				D8

Other comments on the Evaluation

The final report represents 15% of the final mark in the subject. The remaining 85% belongs to the tests and quizs (theory and practical exercises).

Those students who avoid continuous evaluation can assist the final exam with a global punctuation 100%. The content of this exam includes theory, exercises and all the presented reports of their classroom mates.

For the students following the continuous evaluation, there will be some partial exams (quizs). The final exam will be exent of the content passed in these mid-term exams. If these quizs are failed, the students should be evaluated again in the final exam.

To be considered as a continuous evaluation student it is necessary to inform about this intention to the teacher by filling a personal file (with photography) before the first mid-term exam.

Calendar of exams:

- End of Career: 22/09/2017
- Ordinary call 2º period: 21/05/2018
- Extraordinary call Julio: 02/07/2018

This information can verify /consult of up to date form in the page web of the centre:

http://minasyenergia.uvigo.es/es/docencia/examenes

Sources of information
Basic Bibliography
Heywood, J.B., Internal combustion engines fundamentals, McGraw-Hill, 1988
Payri F. and Desantes J.M., Motores de combustión interna alternativos, Reverté, 2011
Muñoz M. y Payri F, Motores de combustión interna alternativos, Publicaciones de la UP Valencia, 1984
Complementary Bibliography
Mollenhauer K. y Tschöke H, Handbook of Diesel Engines., Springer, 2010
Taylor C.F., The internal combustion engine in theory and practice: vol. 1. Thermodynamics, fluid flow,
performance., MIT press, 1998
Taylor C.F., The internal combustion engine in theory and practice: vol. 2. Combustions, fuels, materials, design,
MIT press, 1998
Gordon P. Blair, Design and simulation of four-stroke engines, SAE Internacional, 1999
Arias-Paz M, Manual del automóvil , Dossat, 2006
Moran M.J. y Shapiro H.N, Fundamentos de Termodinámica Técnica, Reverté, 2004
Heisler H, Advanced Engine Technology, SAE Internacional, 1995
Robinson John, Motocicletas. Puesta a punto de motores de dos tiempos., Paraninfo, 2011

Agüera Soriano J., Termodinámica Lógica y Motores Térmicos, 6ª ed, Ciencia, 1993

Recommendations

Subjects that it is recommended to have taken before

Physics: Thermal systems/V09G290V01306 Thermodynamics and heat transfer/V09G290V01302

Generation and distribution of conventional and renewable thermal energy/V09G290V01503