Universida_{de}Vigo

Subject Guide 2018 / 2019

IDENTIFYIN	G DATA				
Physics 3					
Subject	Physics 3				
Code	V11G200V01301				
Study	(*)Grao en				
programme	Química				
Descriptors		Choose	Year	Quadme	ester
	6	Mandatory	2nd	Ist	
leaching language	Spanish				
Department	Applied Physics Physical Chemistry				
Coordinator	Flores Rodríguez, Jesús Ramón				
Lecturers	Flores Rodríguez, Jesús Ramón Martínez Piñeiro, Manuel				
E-mail					
Web	nores@uvigo.cs				
General	The matter intends to be an introduction to Quantur	m Mechanics and Sta	atistical mech	anics, oriented	to theirs
description	applications in Chemistry.				
· · ·					
Competenci	es				
Code					
C3 Demons	trate knowledge and understanding of essential facts	, concepts, principle	es and theorie	s in: principles (of
quantur	n mechanics and its application in the description of t	he structure and pro	operties of ato	oms and molecu	les
C14 Demons	trate knowledge and understanding of essential facts	s, concepts, principle	es and theorie	s: relationship t	petween
macroso	opic properties and properties of individual atoms an	d molecules, includi	ing macromol	ecules	
C19 Apply ki	nowledge and understanding to solve basic problems	of quantitative and	qualitative na	ture	
C20 Evaluate	e, interpret and synthesize data and chemical informa	ation			
C22 Process	and perform computational calculations with chemica	al information and c	hemical data		
C23 Present	oral and written scientific material and scientific argu	iments to a specializ	zed audience		
D1 Commu	nicate orally and in writing in at least one of the offici	al languages of the	University		
D3 Learn in	dependently				
D4 Search a	and manage information from different sources				
D5 Use info	rmation and communication technologies and manage	je basic computer to	00IS	the event state	
represe	nematics, including error analysis, estimates of order	is of magnitude, cor	rect use of un	its and data	
D7 Apply th	eoretical knowledge in practice				
D8 Teamwo	rk				
D9 Work in	dependently				
D12 Plan and	I manage time properly				
D13 Make de	cisions				
D14 Analyze	and synthesize information and draw conclusions				
D15 Evaluate	e critically and constructively the environment and or	neself			
Learning ou	tcomes				
Expected res	ults from this subject			Training and L Result	Learning s
To describe in	n an unified way the electromagnetic field by means	of Maxwell's laws. A	pply the	C3 D1	
basic bounda	ry conditions in the vacuum or in materials.			D1	2
				D1	4
To derive the	equation of propagation of an electromagnetic wave	, and describe its m	ain	C3 D1	2
characteristic	s. Relate this concept with the electromagnetic spec	trum.		D1-	4

Characteristics. Relate this concept with the electromagnetic spectrum.D14To explain the empirical phenomena related with the interaction of radiation withC3D12matter which cannot be explained by the Classical Theory, and the solutions proposed (wave-D14corpuscle duality, quantization of the radiation).D15

To know the postulates of Quantum Mechanics and their consequences in the reformulation of the microscopic theory of the Classical Physics.	C3	D1 D12 D14 D15
To explain the essentials of the theory of mathematical operators, including the concepts of eigenfunction and eigenvalue, spectrum, linearity and hermiticity, complete sets of eigenfunctions etc.	C3	D1 D9 D12 D14
To write the fundamental operators of Quantum Mechanics (position, linear and angular moment, Hamiltonian of simple systems).	C3 C19	D1 D9 D12 D14
To apply the previous concepts to the quantum- mechanical study of simple systems, like a particle in a square well potential, or to a harmonic oscilator potential, by resolving the time-independent Schrödinger equation.	C3 C19	D1 D3 D6 D8 D12 D13 D14
To calculate the eigenfunctions and eigenvalues of the angular momentum operator.	C3 C19	D6 D12 D14
To resolve the wave equation of the hydrogen atom, and calculate its eigenfunctions (orbitals).	C3 C19	D6 D8 D12 D14
To resolve the Schrödinger equation for many-electron atoms by means of approximate methods.	C3 C19 C20	D1 D5 D6 D9 D12 D13 D14
To explain in a simple way the transitions between states and the absorption and emission spectra	n.C3 C19 C20 C22 C23	D1 D6 D8 D9 D12 D14 D15
To know the laws of Statistical Mechanics, which govern the behaviour of many-particle systems, i particular the Maxwell-Boltzmann statistics. Derive the partition function of a system and know in detail its physical meaning.	nC14 C20 C22 C23	D1 D4 D5 D6 D7 D8 D12 D13
To apply the Maxwell-Boltzmann statistics to the case of the ideal gases of atoms and polyatomic particles to estimate thermodynamic properties, using microscopic properties like the mass, the molecular geometry and the vibrational frequencies.	C14 C19	D1 D4 D5 D6 D7 D8 D12 D13
Contents		
Торіс		
Electromagnetic field: equations of Maxwell. Displacement current. Maxwell equations. Energy. Waves equations.		
Quantizacion Of radiation. Wave-corpuscle dualityUltraviolet catastrophe		

-	photoe	lectric	Effect
	Y_rave	Brada	condi

X-rays. Bragg condition. Braking radiation. Compton effect Wave-corpuscle duality

Principles of Quantum Mechanics	Limitations of Classical Physics and origin of Quantum Mechanics De Broglie Hypothesis		
	Uncertainty Relationship		
	Quantum Mechanics Postulates		
	Virial Theorem		
Quantum-mechanical Study of model systems	Introduction.		
	Particle in a box of potential.		
	Harmonic oscillator.		
	Angular moment and rigid rotor.		
Approximate methods	Introduction.		
	Method of variations.		
	Method of perturbations.		
Hydrogen-like Atoms	Introduction.		
	Resolution of the radial part of the equation of Schrödinger. Hydrogen-like		
	Orbitals.		
	Angular and magnetic moments electronic.		
	Electronic spin.		
	Spin-orbit coupling.		
	Hyperfine structure.		
	Spectra of Hydrogen-like atoms		
Polielectronic atoms	Approximation of independent electrons.		
	Antisymmetry Principle.		
	Slater orbitals and basic functions.		
	SCF-HF Method		
	Terms and electronic levels.		
	Spectra of polielectronic atoms		
Statistical mechanics	Nomenclature and postulates. Canonical ensemble.		
	Canonical partition function.		
	Systems of non-interacting particles. Molecular partition function.		
	Canonical partition function for a pure ideal gas.		
	Boltzmann distribution law for non-interacting molecules.		
	Statistical thermodynamics for ideal gases.		
	Introduction to the study of real systems.		

Planning			
	Class hours	Hours outside the classroom	Total hours
Lecturing	25	50	75
Problem solving	26	39	65
Introductory activities	1	1	2
Short answer tests	4	0	4
Essay questions exam	4	0	4
*The information in the planning table	is for guidance only and does no	ot take into account the het	erogeneity of the students

Methodologies	
	Description
Lecturing	Discussion of the fundamental points of each subject and presentation of those which are going to
	be tackled in the seminars
Problem solving	Resolution of numerical problems, theoretical questions and development of the theoretical points
	proposed in the masterclasses with the participation of the student.
Introductory activities	Presentation of the subject with a brief desription of: sections, contents, distribution of the sections
	in the short tests and in the final exam general norms of evaluation,etc.

Personalized attention

Methodologies	Description
Lecturing	Discussion of the main points of the subject. Answers to the questions related with the points raised by the students not only in the master session but also in the seminars. The students will know before the beginning of the course the schedules of the the tutorial sessions offered by the professors of the subject. In those tutorials the student will be able to review his/her examinations
Problem solving	Answers to the questions related with the points the students may have raised in the classes devoted to problem resolution and in the tutorial sessions. The students will know before the beginning of the course, the schedules of the the tutorial sessions offered by the professors of the subject. In those tutorials the student will be able to review his/her examinations

Assessment

	Description	Qualificatior	nTraini Lea Res	ng and rning sults
Problem solving	It will consist on the resolution of exercises and tests in the classroom. Nevertheless, the teacher will be able too to ask the student to deliver the solution to previously proposed exercises, that he/she has resolved in an autonomous way. In this case the teacher may ask the student tho explain to him indivdually how he/she has resolved the exercise.	25	C19 C20 C22 C23	D1 D3 D4 D5 D6 D7 D8 D9 D12 D13 D14 D15
Short answe tests	r During the course two short written tests will take place. They will correspond, respectively, to the contents of the sections 1 to 3 and 4 to 8 respectively. If any of those written tests is not passed the student must take on the corresponding part of the final exam (December/January). The student must take on the whole subject in the second-opportunity exam (June/July).	37.5	C3 C14 C19 C20	D6 D7 D9 D12 D13 D14
Essay questions exam	At the end of the course a full written test will take place in which the students can take on those aspects that they did not pass in the short written tets or improve in those they did pass.	37.5	C3 C14 C19 C20	D6 D7 D9 D12 D13 D14

Other comments on the Evaluation

During the course two short written tests will take place corresponding to sections 1-3, the first one, and to sections 4-8, the second. Both will contain problems and questions and, if they are passed, the student, is not obliged to take on the corresponding part of the subject in the (first-call) final exam (December/January), although he/she can do so in order to improve his/her mark. On a voluntary basis the student may participate in the seminars by solving exercises on the board. Also voluntarily the student may solve at home some proposed exercises and deliver them to the teacher. The final exam will include the whole subject but is divided into two parts corresponding to the two tests so the student can take on any or both of them, even if they have passed the short written test of that part.

The student though, must reachin the written tests a global minimum mark of 3.5/10 in order to accumulate the points obtained by resolving exercises independently or in the classroom.

In the second-opportunity evaluation (July) the student should do a full written test; the points obtained by exercise resolution (troubleshooting section) will be mantained.

On a voluntary basis, the students will be able to participate in the resolution of exercises in the seminars or deliver the answer to the written exercises proposed in the classroom.

It will be understood that any student who has not taken any written test (short or the final exam) has not really followed the subject and will not be given a mark (his/her qualification will be "no presentado").

urces of information
sic Bibliography
mplementary Bibliography
Eisberg, y R. Resnick, Fisica Cuantica , 1983,
Alonso y E.J. Finn, Física , 2000,
N. Levine, Fisicoquímica , 2004,
N. Atkins y J. de Paula, Atkin's Physical Chemistry , 2014,
Bertrán y otros, Química Cuántica , 2000,
. Levine, Química Cuántica , 2001,
commendations

Subjects that continue the syllabus Physical chemistry II/V11G200V01403

Subjects that it is recommended to have taken before Physics: Physics I/V11G200V01102 Physics: Physics 2/V11G200V01201 Mathematics: Mathematics 1/V11G200V01104 Mathematics: Mathematics 2/V11G200V01203