Universida_{de}Vigo

Subject Guide 2023 / 2024

				Su	bject Guide 2023 / 2024
IDEN	TIFYIN	G DATA			
Appl	ication	Technologies			
Subje		Application			
-		Technologies			
Code		V05M145V01105	·		
Study	/	Máster			
progr	amme	Universitario en			
		Ingeniería de			
		Telecomunicación			
Desc	riptors	ECTS Credits	Choose	Year	Quadmester
		5	Mandatory	1st	1st
Teacl	hing	English			
langu					
	rtment				
Coord	dinator	Fernández Vilas, Ana			
Lectu	irers	Fernández Vilas, Ana			
E-ma	il	avilas@uvigo.es			
Web		http://moovi.uvigo.gal			
Gene		Students will obtain a global picture of the ma			
descr	ription	Basic problems like distributed computing, int			be addressed. These
		concepts will be study in the framework of the	e cloud computing paradigm		
Trair	ning an	d Learning Results			
Code					
A5	CB5 Stu	idents must have learning skills to allow thems	selves to continue studying i	n largely self-o	lirected or autonomous
	way	-			
B1	CG1 Ab	ility to project, calculate and design products,	processes and facilities in te	lecommunicat	ion engineering areas.
B4	CG4 Ca	pacity for mathematical modeling, calculation	and simulation in technolog	cal centers an	d engineering
		ies, particularly in research, development and			
	Engine	ring and associated multidisciplinary fields.			
		ility to apply acquired knowledge and to solve		ar environmer	its within broader and
		cipline contexts, being able to integrate know			
		kills for lifelong, self-directed and autonomous			
C4	CE4 Ab	lity to design and plan networks for transporting	ng, broadcasting and distrib	ution of multin	nedia signals.

CE4 Ability to design and plan networks for transporting, broadcasting and distribution of multimedia signals. CE8 Ability to understand and know how to apply the operation and organization of the Internet, new generation Internet technologies and protocols, component models, middleware and services. $\frac{C4}{C8}$

CE9 Ability to solve convergence, interoperability and design of heterogeneous networks with local, access and trunk networks; as well as the integration of telephonic, data, television and interactive services. <u>C9</u>

Expected results from this subject		
Expected results from this subject	Training and	
	Learning Results	
Know and apply the different communication techniques for communication and distributed computing	A5	
	B1	
	B4	
	B12	
	C4	
Know and apply the techniques for data sharing to enable interoperability among systems and/or service	s A5	
	B1	
	B8	
	B12	
	C4	
	C9	

Know and apply how to specify and discover software services to be integrated in complex telematic	A5
solutions	B1
	B4
	B8
	B12
	C4
	C9
Know and apply virtualization concepts : cloud computing and content distribution networks.	A5
	B1
	B12
	C4
	C8

Contents				
Topic				
1. Cloud computing: overview	a. Service models (laaS, PaaS, SaaS) and deployment models b. Reference architectures for cloud applications: virtualization			
2. Cloud Computing: AWS	a. Commercial platforms: AWS b. Data Storage			
3. Synchronization in distributed systems	a. Modeling & main problems b. Physical clocks c. Logical time & logical clocks d. Global state			
4. Taking decisions in distributed systems	a. Mutual exclusion b. Elections c. Group communication d. Consensus			
5. Replication and management of groups.	a. System model for replicated objects b. The role of group communication c. Fault-tolerant systems d. The case of high availability: Gossip			
6. Distributed Storage & MapReduce	a. Type of data b. Data storage distributed solutions c. Distributed storage systems d. MapReduce programming model e. The Hadoop environment			
7. Parallel Computing	a. Technological basis b. Types of parallelism c. Parallel programming d. Big data frameworks e. Parallel performance analysis			

Planning			
	Class hours	Hours outside the classroom	Total hours
Laboratory practical	13	26	39
Lecturing	20	29	49
Laboratory practice	2	30	32
Essay questions exam	2	0	2
Objective questions exam	1	0	1
Laboratory practice	2	0	2
*The information in the planning table is fo	r guidance only and does no	ot take into account the het	erogeneity of the students.

Methodologies				
	Description			
Laboratory practical	cal Students will design and develop small prototypes and software solutions to reinforce the theoretical concepts explained in master sessions.			
	We will focus on skills EC9, EC8, EC4, CG12, CG8 and CB5.			
Lecturing	Teachers will combine both concepts explanation and toy examples resolution.			
-	Resolution of small situations at class will foster debates, especially if it is done in groups.			
	We will focus on skills CG1, CG4, CG12 and CE8			

Personalized assistance

Methodologies Description Lecturing Teachers will combine both concepts explanation and toy examples resolution. Resolution of small situations at class will foster debates, especially if it is done in groups Laboratory practical Students will design and develop small prototypes and software solutions to reinforce the theoretical

Laboratory practical Students will design and develop small prototypes and software solutions to reinforce the theoretical concepts explained in master sessions.

	Description	Qualificati	on	Training and Learning	Results
Laboratory practice	Laboratory practice I	25	A5	B1	C4
				B8	C8
				B12	
Essay questions exam	Essay questions exam	40		B1	C4
				B4	C8
				B8	C9
				B12	
Objective questions examObjective questions exam		10		B1	C4
				B4	C8
				B8	C9
				B12	
Laboratory practice	Laboratory practice II	25		B1	C4
				B8	C8
				B12	

Other comments on the Evaluation

Students can follow up continuous assessment or global assessment. This selection should be done when at the deadline of the first assingment. Once a student selects "continuous evaluation" (having done the first intermediate practical assignment) his/her mark will never be "not taken".

Final mark will be calculated using the weighted arithmetic mean of all the assessment rates.

The written exam will take place when and where the official calendar specifies.

Practical assignments:

1- Continuous assessment: 2 intermediate assignments (deadlines will be detailed in the document that will be published the first day of the semester).

2- Global assessment: 1 assignment (deadlines will be detailed in the document that will be published the first day of the semester).

The scheme for the estraordinary call is exactly the same as the single evaluation.

If any kindof plagiarism is detected, the final mark will be "failed (0)". This fact will be reported to the academic authorities.

Sources of information

Basic Bibliography

George Colouris, Jean Dollimore, Tim Kindberg, Gordon Blair, **Distributed systems: Concepts and design**, Ed. Pearson, 2012

Dan C. Marinescu, Cloud Computing: Theory & Practice, Elsevier, 2013

Jimmy Lin , Chris Dyer, Graeme Hirst, **Data-Intensive Text Processing with MapReduce (Synthesis Lectures on Human Language Technologies)**, Morgan and Claypool Publishers, 2010

Victor Eijkhout, Edmond Chow, Robert van de Geijn, **Introduction to High Performance Scientific Computing**, Lulu, 2014

Trobec, R., Slivnik, B., Bulić, P., Robič, B., Introduction to Parallel Computing From Algorithms to Programming on State-of-the-Art Platforms, Springer, 2018

Complementary Bibliography

Rajkumar Buyya, James Broberg, Andrzej Goscinski, Cloud computing: principles and paradigms, Wiley, 2014 George Reese, Cloud Application Architectures: Building Applications and Infrastructure in the Cloud, O'Reilly Media, 2009

Barrie Sosinsky, Cloud Computing Bible, John Wiley & Sons, 2010

Kai Hwang, Geoffrey C. Fox andJack J. Dongarra, **Distributed and Cloud Computing**, Elsevier., 2012 Michael J. Kavis, **Architecting the cloud**, Wiley, 2010

Recommendations