Universida_{de}Vigo

Subject Guide 2020 / 2021

IDENTIFYI	• =			
Statistical	Signal Processing			
Subject	Statistical Signal			
	Processing			
Code	V05M145V01303			
Study	Telecommunication			
	Engineering			
Descriptors	ECTS Credits	Choose	Year	Quadmester
	5	Optional	2nd	1st
Teaching	English			
language				
Department				
Coordinator	López Valcarce, Roberto			
Lecturers	López Valcarce, Roberto			
E-mail	valcarce@gts.uvigo.es			
Web	http://faitic.uvigo.es			
General description				
Compotor				
Competen	Lies			

Code

B4 CG4 Capacity for mathematical modeling, calculation and simulation in technological centers and engineering companies, particularly in research, development and innovation tasks in all areas related to Telecommunication Engineering and associated multidisciplinary fields.

- B8 CG8 Ability to apply acquired knowledge and to solve problems in new or unfamiliar environments within broader and multidiscipline contexts, being able to integrate knowledge.
- C23 CE23/PS3 Ability to apply methods of statistical processing of signal communications systems and audiovisual.

Learning outcomes			
Expected results from this subject	Training and		
	Learning Results		
Ability to apply statistical estimation techniques in communications and multimedia systems	C23		
Ability to apply statistical detection techniques in communications and multimedia systems	C23		
Ability to determine and interpret fundamental limits in estimation and detection problems	B4		
	C23		
Ability to evaluate the performance of estimation and detection techniques, by analytical as well as by	B8		
Monte Carlo simulation methods	C23		

Contents		
Торіс		
Part 1: Parameter Estimation	 The statistical estimation problem. Performance metrics: bias, variance, MSE. Minimum Variance Unbiased Estimator (MVUE). Fisher Information and Cramer-Rao bound. Slepian-Bangs formula. Best Linear Unbiased Estimator (BLUE) and Maximum Likelihood Estimator (MLE): definition, properties, and examples. 	
Part 2: Detection Theory	 Hypothesis tests: types. Performance metrics: false positives and false negatives. ROC curves. Neyman-Pearson theorem: likelihood ratio. Detection under the Bayesian philosophy: probability of error, risk, optimum detector. Examples: deterministic and random signals 	

Planning				
	Class hours	Hours outside the classroom	Total hours	
Lecturing	21	23	44	
Practices through ICT	7	0	7	
Autonomous problem solving	0	28	28	
Simulation	0	25	25	
Project	0	21	21	
*The information in the planning table is t	for guidance only and does no	ot take into account the bet	erogeneity of the students	

The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies

	Description		
Lecturing	Presentation of main topics, possibly with audiovisual aids. Skills involved: CG4, CG8		
Practices through ICT	Computer-based simulation in the lab of statistical signal processing applications to		
	communications and multimedia, via Monte Carlo methods. Performance analysis. Skills involved:		
	CG8, CE23		
Autonomous problem	Students will be given a series of short homework assignments throughout the course that they		
solving	should turn in by the set deadline. Skills involved: CG4, CG8, CE23		
Simulation	Computer-based simulation of statistical signal processing applications to communications and		
	multimedia, via Monte Carlo methods. Performance analysis. Skills involved: CG8, CE23		

Personalized assistance			
Methodologies	Description		
Lecturing	Student aid will be provided during office hours by appointment, as well as on-line (email).		
Practices through ICT	Student aid will be provided during lab hours and office hours by appointment, as well as on-line (email).		

Assessment					
	Description	Qualification	Training and		
				Learning Results	
Autonomous	Students will be given a series of short homework assignments	40	B4	C23	
problem solving	throughout the course that they should turn in by the set deadline.		B8		
Project	Development of an individual final project in which students will apply	60	B4	C23	
	the acquired tools and techniques to a practical problem.		B8		

Other comments on the Evaluation

Students may choose one of the following two assessment options:

1) Continuous assessment: Final grade will consist of:

- final project (up to 6 points)
- homework assignments (up to 4 points)

A minimum grade of 30% in the final project is required in order to pass the course. Otherwise, the overall grade will directly be that of the final project.

Homework grades from the first call will be kept for the second call, in which the student will be allowed to resubmit the final project. Students assume continuous assessment with the submission of any homework assignment.

2) One-shot assessment: The final grade is the one achieved in the comprehensive test, for both the first and second call.

Sources of information

Basic Bibliography

S. M. Kay, Fundamentals of Statistical Signal Processing, vol. I: Estimation Theory, 1, Prentice Hall, 1993 S. M. Kay, Fundamentals of Statistical Signal Processing, vol. II: Detection Theory, 1, Prentice Hall, 1998 Complementary Bibliography

L. L. Scharf, **Statistical signal processing: detection, estimation and time series analysis**, 1, Pearson, 1991 T. K. Moon, W. C. Stirling, **Mathematical Methods and Algorithms for Signal Processing**, 1, Pearson, 1999 IEEE, **http://ieeexplore.ieee.org**/,

Recommendations

Communication Advanced Systems/V05M145V01302

Subjects that it is recommended to have taken before

Advanced Digital Communications/V05M145V01204 Signal Processing in Communications/V05M145V01102

Contingency plan

Description

=== EXCEPTIONAL PLANNING ===

Given the uncertain and unpredictable evolution of the health alert caused by COVID-19, the University of Vigo establishes an extraordinary planning that will be activated when the administrations and the institution itself determine it, considering safety, health and responsibility criteria both in distance and blended learning. These already planned measures guarantee, at the required time, the development of teaching in a more agile and effective way, as it is known in advance (or well in advance) by the students and teachers through the standardized tool.

=== ADAPTATION OF THE METHODOLOGIES ===
* Teaching methodologies maintained
All of them
* Teaching methodologies modified
None of them
* Non-attendance mechanisms for student attention (tutoring)
Videoconferencing
* Modifications (if applicable) of the contents
N/A
* Additional bibliography to facilitate self-learning
N/A
* Other modifications
N/A
=== ADAPTATION OF THE TESTS ===

There are no modifications of the assessment mechanisms, or the corresponding weights