Universida_{de}Vigo

Subject Guide 2019 / 2020

IDENTIFYIN	• =				
Information	Security				
Subject	Information				
	Security				
Code	V05M175V01102				
Study	(*)Máster				
programme	Universitario en				
	Ciberseguridade				
Descriptors	ECTS Credits		Choose	Year	Quadmester
	6		Mandatory	1st	1st
Teaching	English				
language					
Department					
Coordinator	Fernández Veiga, Manuel				
Lecturers	Fernández Veiga, Manuel				
	Gestal Pose, Marcos				
	Pérez González, Fernando				
E-mail	mveiga@det.uvigo.es				
Web	http://faitic.uvigo.es				
General	This course covers the fields	of cryptography and cr	yptanalysis, genera	tion of pseudo	random numbers and
description	functions, message integrity,				
	information systems, secure				
			-	-	

Competencies

Code

A2 Students will be able to apply their knowledge and their problem-solving ability in new or less familiar situations, within a broader context (or in multi-discipline contexts) related to their field of specialization.

- A5 Students will apprehend the learning skills enabling them to study in a style that will be self-driven and autonomous to a large extent.
- C1 To know, to understand and to apply the tools of cryptography and cryptanalysis, the tools of integrity, digital identity and the protocols for secure communications.
- C4 To understand and to apply the methods and tools of cybersecurity to protect data and computers, communication networks, databases, computer programs and information services.
- C10 Knowledge of the mathematical foundations of cryptography. Ability to understand their evolution and future developments.

Learning outcomes

Expected results from this subject	Training and Learning Results
Understand the theoretical basis of encryption: Shannon ciphers, perfect security, semantic security,	C1
information-theoretic security	C10
To know and be able to use stream ciphers	C1
	C4
	C10
To know and be able to apply block ciphering tools, pseudorandom functions and the DES and AES	
ciphering standards	C4
	C10
Knowledge about the construction, use and properties of hash functions, universal hashing and collision	C1
resistant hashing. Knowledge about message authentication codes. Case studies	C4
	C10
Knowledge about public key cryptography and PK cryptographic schemes: RSA, ElGamal, Diffie-Hellman.	C1
Knowledge about digital signatures. Semantic security of public key cryptography	C4
	C10

To know the basics of advanced cryptography: cryptography on elliptic curves. Lattice-based cryptograph	hyA2
	A5
	C1
	C4
	C10
To know and be able to use identification protocols, key interchange protocols and interactive	A5
communication protocols	C1
	C4
	C10
To understand and have the ability to apply the basic techniques for steganography, watermarking and	A5
digital forensics	C1
	C4
	C10
To know, understand and be able to use techniques for data anonymization	A2
	A5
	C1
	C4
	C10
To know and understand the basic principles of distributed secure computation	A2
	A5
	C1
	C4
	C10

Contents	
Торіс	
1. Encryption	Shannon ciphers. Perfect security. Semantic security. Information-theoretic security: the wiretap channel
2. Stream ciphers	Pseudorandom generators. Composition of PRGs. Security. Attacks. Case studies
3. Block ciphers	Block ciphers. Security. DES & AES. Pseudorandom functions. Construction of PRFs and block ciphers
4. Message integrity	Authentication codes. Message integrity. Definition of security. Keyed MACs. PRFs and MAC. Hashing, hash functions. Universal hashing. Collision resistant hashing. Case studies
5. Authenticated encryption	Definition. Composition. Attacks, examples and case studies
6. Public key cryptography	Definition. Semantic security. One-way trapdoor functions. RSA, ElGamal, McEliece crypto systems. Diffie-Hellman key agreement. Digital signatures. Case studies
7. Advanced cryptography	Elliptic curve cryptography. Lattice-based cryptography. RLWE. Quantum- resistant cryptography. Homomorphic encryption
8. Identification protocols	Definitions. Passwords. Challenge-response. sigma-protocols. Okamoto and Schnorr protocols
9. Anonymization	Definitions. t-integrity and anonymity. Divergence. Analysis
10. Data hiding and steganography	Definitions. Spread-spectrum watermarking. Dirty paper coding. Digital forensics.
11. Secure computation	Computable functions. Fundamental limits. Two-way secure computation. Multiparty secure computation. Interactive communications. Homomorphic computations. Applications

	Class hours	Hours outside the classroom	Total hours
Problem solving	0	24	24
Laboratory practical	18	36	54
Lecturing	17	51	68
Essay questions exam	2	0	2
Problem and/or exercise solving	1	0	1
Project	1	0	1

Methodologies

Description

Problem solving	Students are supposed to solve problems and exercises about the curse contents. Written homework, with review and grading.
	This methodology develops the competences CB2, CB4, CB5, CE1, CE44, CE10 and CT5.
Laboratory practical	Students are expected to work in the computer laboratory doing small programs on ciphering, and a programming assignment on ciphering, authentication, anonymity or digital forensics. The programming assignment will be supervised by the instructors.
	This methodology develops the competences CB2, CB4, CB5, CE1, CE44, CE10 and CT4.
Lecturing	Lectures on the topics included in the course: definitions, concepts, main results, properties and applications.
	This methodology develops the competences CB2, CB4, CB5, CE1, CE44, CE10 and CT5.

Personalized assistance		
Methodologies	Description	
Lecturing	Individual office hours will be offered to the students who need guidance in the study, or further explanations on the course contents, clarification on the solutions to problems, etc.	
Problem solving	Individual office hours will be offered to answer the questions about problems and exercises assigned to the students	
Laboratory practica	al Individual assistance will be given to the students who request guidance on the programming assignments or computer lab practice	

	Description	Qualification	Tr	aining and
			Lear	ning Results
Essay questions	Written exam. Questions, problems or exercises about the contents	50	A2	C1
exam	covered in the course		A5	C4
				C10
Problem and/or	2-3 homework problem sets, to be worked out individually. Written	20	A2	C1
exercise solving	submission		A5	C4
-				C10
Project	Design and development of a programming assignment. Functional	30	A2	C1
	and performance tests will be run		A5	C4
				C10

Other comments on the Evaluation

The student must choose between two alternative, mutually exclusive assessment method: continuous assessment or eventual assessment.

The continuous evaluation option consists in a final written exam (50% of the qualification), the completion of programming assignments (30% of the qualification) and homework (20%). These assignments will be due the last working day preceding the start of the examination period. The eventual assessment option consists in a final written exam (60% of the qualification) and in the completion of assignments (40% of the qualification). The assignments will be due the last working day preceding the start of the examination period. The examinations of the continuous and the eventual assessment options may not be equal.

The students can declare their preferred assessment type until the date of the written examination.

The students who fail the course will be given a second opportunity at the end of the academic year to do so. Their academic achievements will be re-evaluated, both with a written exam (theoretical knowledge) and a review of their engineering project looking for improvement or changes. The weights are the same they were committed to, according to their choice.

Any assigned grade will only be valid during the academic year where it is awarded.

Sources of information
Basic Bibliography
D. Boneh, V. Shoup, A graduate course in applied cryptography, http://toc.cryptobook.us, 2018
Complementary Bibliography
O. Goldreich, Foundation of cryptography, vol. I, Cambridge University Press, 2007
O. Goldreich, Foundation of cryptography, vol. ii, Cambridge University Press, 2009
J. Katz, Y. Lindell, Introduction to modern cryptography, 2, CRC Press, 2015

A. Menezes, P. van Oorschot, S. Vanstone., **Handbook of applied cryptography**, CRC Press, 2001 C. Dwork, A. Roth, **The algorithmic foundations of differential privacy**, NOW Publishers, 2014

C. Dwork, A. Roth, **The algorithmic foundations of differential privacy**, NOW Publishers, 2014 W. Mazurczyk, S. Wenzel, S. Zander, A. Houmansadr, K. Szczypiorski, **Information hiding in communications networks: Fundamentals, mechanisms, applications, and countermeasures**, Wiley, 2016 I. Cox, M. Miller, J. Bloom, J. Fridrich, T. Kolker, **Digital watermarking and steganography**, 2, Morgan Kaufmann, 2008 A. El-Gamal, Y. Kim, **Network Information Theory**, Cambridge University Press, 2011

Recommendations

Other comments

The course is given in English. Ability for mathematical reasoning is highly recommended.