Universida_{de}Vigo

Subject Guide 2020 / 2021

~			Subjec	t Guide 2020 / 2021
IDENTIFYIN	IG DATA			
Antennas				
Subject	Antennas			
Code	V05M145V01208			
Study	Telecommunication			
	Engineering ECTS Credits	Choose	Year	Quadmester
Descriptors	5	Optional	1st	2nd
Teaching	English	optional		
language	2.19.011			
Department				
Coordinator	Díaz Otero, Francisco Javier			
Lecturers	Díaz Otero, Francisco Javier			
	Vazquez Alejos, Ana			
E-mail	frdiaz@uvigo.es			
Web		<u> </u>		
General	The subject devotes to the study of antennas and cov			
description	design, going through the models of analysis and sim	ulation of the bena	viour of the antenna	IS
-	-			
Competend	les			
Code	dente must apply their knowledge and shills, to solve	n rahlana in naw		na anto within
	udents must apply their knowledge and ability to solve r (or multidisciplinary) contexts related to their field of		or unfamiliar environ	ments within
A4 CB4 St	idents must communicate their conclusions, and the	nowledge and reas	ons stating them- t	o specialists and
	ecialists in a clear and unambiguous way.	diowieuge und rea	ions stating them, t	o specialists and
	pacity for mathematical modeling, calculation and sin	nulation in technolo	gical centers and er	ngineering
	nies, particularly in research, development and innova			
	ering and associated multidisciplinary fields.			
	ility to develop radio communication systems: antenn	a, equipment and s	ubsystems design; d	channel modeling;
	dgeting; and planning.			
	ility to implement systems by cable, line, satellite, in f			nments.
C5 CE5 Ab	ility to design systems of radio navigation and positior	ning, as well as rad	ar systems.	
Learning o				
Expected re	sults from this subject			Training and
Ta un danata				Learning Results
To understa	nd the phenomena of electromagnetic radiation and re	eceiving signals		A4 B4
Application	of the knowledge and techniques in real work environr	mont of internation	al trado	D4
	ain parameters that characterise the behaviour of the			A4
	an parameters that characterise the behaviour of the	a anomicing and fe	ancenning ancennias	84 B4
				C2
				C3
				C5
Know the di	stinct types of antennas according to their applications	s and operating free	quencies	A4
				B4
				C2
				C3
To bo able +	o understand and develop models to simulate the beha	avior of the antern	as and	C5 A4
	characteristic parameters		as allu	84 B4
predict their				C2
				C3
				C5

Contents	
Торіс	
1. Electromagnetic antennas Basics	1.1 Generalities
Competencies related: CE2, CE3, CE5	1.2 Phenomenon of electromagnetic radiation
	1.3 Properties of the field of radiation
	1.4 The antenna in transmission
	1.5 The antenna in reception
	1.6 The antenna in systems of communications and in radar
2. Modeling antennas	2.1 Linear Antennas
Competencies related: CB4, CG4	2.2 Aperture Antennas
	2.3 Arrays
3. Types of antennas	3.1 Wire Antennas
CB4, CG4, CE2, CE3, CE5	3.2 Printed and Slot Antennas
	3.3 Horns, lens and reflectors

Planning			
	Class hours	Hours outside the classroom	Total hours
Lecturing	15	15	30
Problem solving	3	6	9
Case studies	8	24	32
Practices through ICT	0	26	26
Problem and/or exercise solving	1	6	7
Laboratory practice	1	6	7
Essay questions exam 2 12 14		14	
*The information in the planning table is for	guidance only and does no	ot take into account the het	erogeneity of the students.

Methodologies	
	Description
Lecturing	Presentation of the contents on the subject under study, instructions and exercises or projects to be developed by the student. Competencies CB2, CE2, CE3, CE5
Problem solving	Problems and / or exercises related to the subject. The student should develop appropriate or correct solutions through the exercise routines, applying formulas or algorithms, applying transformation methods available and interpretate the results. Complement of the Master session Competencies CB2, CG4, CE2.
Case studies	Analysis of a fact, problem or real event in order to learn, interpret it, solve it, generate hypotheses, compare data, complete knowledges, diagnose it and train in alternative procedures of solution. Competencies CB2, CG4, CE2, CE3, CE5.
Practices through ICT	Activities of applying knowledge in a given context and acquiring basic and procedural skills in relation to the subject, through ICT. Competencies CB2, CB4, CG4, CE2.

Description
Personalized attention. Questions and doubts during teaching timetable
Questions and doubts during teaching timetable and in office hours.
Questions and doubts during teaching timetable and in office hours.
Questions and doubts during teaching timetable, in office hours, Faitic and e-mail.

Assessment

	Description	Qualification Training and Learning Results
Problem and/or exercise solving	Conceptual questions on the course syllabus.	10 A2

Laboratory practice	It will value the quality of the homeworks assigned, the participation and attitude showed in the lectures, as well as the oral presentation of the work.	60	A2 A4
Essay questions exam	Final examination: Evaluation of the competencie that includes open questions on a subject. The students have to develop, relate, organise and present the knowledges that have on the matter in an extensive answer to a practical situation posed.	30	A2 A4

Other comments on the Evaluation

It will be offered to the students enrolled in this class two systems of evaluation: continuous evaluation and single evaluation.

1. CONTINUOUS EVALUATION

The system of continuous evaluation will consist in:

- A short test to be held in class around the mid-teaching period. 10% rating. Rating EC1, with a maximum of 1 point.
- An antenna design for a particular application. It will be held autonomously through the use of software simulation tools. The student will prepare and deliver a report to be presented in class at the end of the semester. Rating EC2, with a maximum of 6 points. The 6 points of this exercise will be distributed as follows: 2 points for active participation in the sessions (in C groups) dedicated to the design, presentation and discussion; 2 points for the quality of the proposed solution; 1 point for the quality of the report submitted; and 1 point for the quality of the oral presentation.
- An extended-response exercise in which problems of analysis and design of antennas for specific applications will be solved. It will be held in the same day fixed for the regular final exam for the course. 30% rating. Rating EC3, with a maximum of 3 points.
- The continuous assessment tests are not recoverable, ie, if a student can not fulfill them within the stipulated period the teacher is not required to repeat them.
- The final score for continuous assessment (EC) was calculated as the sum of the scores on the three planned tests: EC =EC1 + EC2 + EC3.
- The score on the assessable tasks (EC) will be valid only for the academic year in which they are made.

It is understood that a student receives this rating system when he has made the first test, given the results of the second and made the corresponding oral presentation. At this time the student will be considered as well as presented to the exam.

2. SINGLE EVALUATION - FIRST CALL

It involves:

- A final exam that will assess competencies CB2, CG4, CE2, CE3, CE5. 40% rating. EF1 score, with a maximum of 4 points.
- The day of the exam the student will deliver a report on an antenna design previously assigned. The student will give an oral presentation at a public meeting in the shortest possible time respecting the compatibility with other tests of the same course and certification. Rated EF2 with a maximum of 6 points.
- The EF1 and EF2 partial qualifications may be held only until the single evaluation second call and within the ongoing course.

3. SINGLE EVALUATION - SECOND CALL

It will follow the same procedure as in the single evaluation - first call. Students, communicating it previously to the start of the exam, may retain their previous note EF1 part (or alternatively EC1 EC3 +) or the EF2 (or EC2) part.

COMMENTS:

- Before the completion or delivery date of each test, the procedure and review of scores will be published within a reasonable period of time.
- Every student that comes to the final test is considered as presented. It will also be considered as presented to the test every student who qualifies for the continuous evaluation system in the terms described above.

• It is considered that the subject is approved if the final grade is equal to or greater than 5.

Sources of information		
Basic Bibliography		
C. A. Balanis, Advanced Engineering Electromagnetcis, 2, Wiley, 2005		
C. A. Balanis, Antenna Theory and Design, 4, Wiley, 2016		
W.L.Stutzman,G.A.Thiele, Antenna Theory and Design, 3, Wiley, 2013		
Complementary Bibliography		
R.S.Elliot, Antenna Theory and Design, 1, Prentice Hall, 1981		
R.E.Collin, Antennas and Radiowave Propagation, 1, Mc Graw Hill, 1985		
P.S.Kildal, Foundations of Antenas. A Unified Approach, 1, Studentlitteratur,		
T.A. Milligan, Modern Antenna Design, 2, Wiley, 2005		

Recommendations

Subjects that continue the syllabus Wireless and Mobile Communications/V05M145V01313 Satellites/V05M145V01311 Wideband Radio Systems/V05M145V01312

Subjects that are recommended to be taken simultaneously

Radio Laboratory/V05M145V01209

Subjects that it is recommended to have taken before

Radiocommunication/V05M145V01103

Contingency plan

Description

=== EXCEPTIONAL PLANNING ===

Given the uncertain and unpredictable evolution of the health alert caused by COVID-19, the University of Vigo establishes an extraordinary planning that will be activated when the administrations and the institution itself determine it, considering safety, health and responsibility criteria both in distance and blended learning. These already planned measures guarantee, at the required time, the development of teaching in a more agile and effective way, as it is known in advance (or well in advance) by the students and teachers through the standardized tool.

In the case that tuition is exclusively remote, then the planning will be the following: lectures will be scheduled at the same time through the Remote Campus of the University of Vigo. Those lectures will be broadcasted online and later recorded to be viewed in asynchronous mode; tutorials will also be in virtual mode through the remote campus and the necessary materials will preferably be sent through the faitic course platform. In addition, the evaluation will be carried out as follows: problems resolution, laboratory exercises (software), homework assignments and evaluation tests will be sent for resolution remotely by the students.

=== ADAPTATION OF THE METHODOLOGIES ===

* Teaching methodologies maintained

All the indicated teaching methodologies are maintained: lectures, problem solving, case studies and laboratory tests with ICT support

* Teaching methodologies modified

There are no relevant modifications in the exposed methodologies.

* Non-attendance mechanisms for student attention (tutoring) Tutoring hours indicated in the teaching guide will be maintained, but in classroom 643 in the Remote Campus of the University of Vigo. To access, the appropriate indications will be given. If necessary, tutoring will be enabled through email and videoconference.

* Modifications (if applicable) of the contents

The scheduled visits (anechoic chamber, televes and airport) will be replaced by video exhibitions detailing the contents that were to be explained in person.

* Additional bibliography to facilitate self-learning

Non applicable

* Other modifications Non applicable

=== ADAPTATION OF THE TESTS === * Tests already carried out Test XX: [Previous Weight 00%] [Proposed Weight 00%] ...

* Pending tests that are maintained
Problem solving [Previous weight 10%] [Proposed Weight 10%]
Laboratory practice and hmework assignments [Previous weight 60%] [Proposed Weight 60%]
Exam of development questions [Previous weight 30%] [Proposed Weight 30%]

* Tests that are modified
Problem solving [Previous weight 10%] [Proposed Weight 10%]
Laboratory practice and homework assignments[Previous weight 60%] [Proposed Weight 60%]
Exam of development questions [Previous weight 30%] [Proposed Weight 30%]

* New tests Non applicable

* Additional Information Non applicable