Universida_{de}Vigo

Subject Guide 2019 / 2020

			9	Subject Guide 2019 / 2020
IDENTIFYIN				
Termal Tec				
Subject	Termal Technology II			
Code	V04M141V01216			
Study	(*)Máster			
programme	Universitario en Enxeñaría Industrial			
Descriptors	ECTS Credits	Choose	Year	Quadmester
I	3	Optional	1st	2nd
Teaching	Spanish	•		
language	English			
Department				
Coordinator	Sieres Atienza, Jaime			
Lecturers	Sieres Atienza, Jaime			
E-mail	jsieres@uvigo.es			
Web				
General	At the end of this course students are expected to ha			
description	calculation of air conditining, or HVAC&R, s	ystems (heating,	, ventilating, air	conditioning and
	refrigeration).			
Competenc	ies			
Code				
	s can communicate their conclusions, and the knowled ecialist audiences clearly and unambiguously.	lge and rationale	e underpinning t	hese, to specialist and
	s must possess the learning skills that enable them to	continue studyir	ng in a way that	will be largely self-
	d or autonomous.	,	5	5 7
C1 CET1. P	roject, calculate and design products, processes, facilit	ties and plants.		
	nowing how to communicate the conclusions -and the		rationale underp	inning these, to specialist
	n-specialist audiences clearly and unambiguously.	-		
	Possess learning skills that will allow further study of a	self-directed or	autonomous mo	de.
C16 CTI5. Ki	nowledge and skills for the design and analysis of therr	nal machines an	d engines, hydra	aulic machines and
facilitie	s for heat and industrial refrigeration			
D1 ABET-a	. An ability to apply knowledge of mathematics, science	e, and engineerir	ng.	
D3 ABET-c.	An ability to design a system, component, or process	to meet desired	needs within rea	alistic constraints such as
econom	nic, environmental, social, political, ethical, health and	safety, manufact	urability, and su	istainability.
	. An ability to identify, formulate, and solve engineering			
D11 ABET-k.	An ability to use the techniques, skills, and modern er	ngineering tools i	necessary for en	gineering practice.
Learning ou	utcomes			
	sults from this subject			Training and Learning Results
Know and un	derstand the different types of systems and equipmen	ts used in air co	nditioning	C1 D1
	both heating and refrigeration applications			C16 D3
-				D5

D5 D11 Know and understand the components used in heating and refrigeration equipments of air C1 D1 conditioning systems C16 D3 D5 D11 Ability to calculate heat engines and its main components C1 D1 C16 D3 D5

D11

Ability to perform designs, calculations and tests of heat engines, heating and refrigeration	A4
systems	A5

Contents			
Topic			
1. PSYCHROMETRICS	1. Moist air		
1. I STORINGMETRICS	2. Psychrometric properties		
	3. Psychrometric Charts		
2. PSYCHROMETRIC PROCESSES	1. Introduction		
	2. Adiabatic mixing of two streams		
	3. Condition line and sensible heat ratio		
	4. Sensible heating or cooling		
	5. Cooling and dehumidification		
	6. Heating and humidification		
	7. Adiabatic humidification		
	8. Heating and dehumidification		
3. AIR CONDITIONING SYSTEMS	1. Introduction		
	1.1 Concept of thermal load		
	1.2. Concepts of space, zone and building		
	1.3 Components of thermal loads		
	2. Types of systems		
	3. Air systems		
	3.1. Basics		
	3.2. Description of the system and components		
	3.3. Calculations		
	4. Water systems		
	4.1. Basics		
	4.2. Description of the system and components		
	4.3. Calculations		
	5. Air-water systems		
	5.1. Basics		
	5.2. Description of the system and components		
	5.3. Calculations		
	6. Direct expansion systems		
	6.1. Basics		
	6.2. Description of the system and components		
4. VAPOR COMPRESSION REFRIGERATION	1. Introduction. Refrigerators and heat pumps		
SYSTEMS	2. The reversed Carnot cycle		
	3. Thermodynamic diagrams		
	4. Ideal cycle or dry cycle		
	5. Basic components of a refrigeration system		
	5.1 Compressor		
	5.2 Evaporator		
	5.3 Condenser		
	5.4. Expansion device		
	6. Calculation parameters		
	7. Actual refrigeration cycle		
	8. Influence of the thermal conditions		
	9. Liquid-vapor heat exchanger		

Class hours	Hours outside the	Total hours
	classroom	
18	27	45
6	6	12
0	14	14
3	0	3
1	0	1
		classroom 18 27 6 6

Methodologies	
	Description
Lecturing	Lecturer's introduction of the contents of the matter object of study.
Laboratory practical	Real processes experimentations in the laboratory which complement the contents covered in the course. Use of software for modelling thermal systems.

C1 C9 C10

D5

Methodologies	Description
• •	Students' questions or doubts about any of the course contents will be solved during the instructor's office hours.
Lecturing	Students' questions or doubts about any of the course contents will be solved during the instructor's office hours

	Description Q		Training and Learning		
			Results		
Essay questions exam	Final exam to evaluate the whole contents of the course	80	A4	C1	D1
				C9	D3
				C16	D5
					D11
Objective questions	The corresponding note to the Continuous Assessment will be	e 20		C1	D1
exam	based on written tests or essays		A5	C9	D3
				C10	D5
				C16	D11

Other comments on the Evaluation

Assesment:

The final qualification is determined by adding the points obtained on the final exam (80%) and those obtained during the continuous assessment (20%).

The points achieved by continuous assessment (20%) will be valid in the first and second calls.

None of the qualifications obtained in the final exam of the the first call will be saved for the second call.

Ethical commitment:

The student is expected to present an adequate ethical behavior. In the event that an unethical behavior is detected (copying, plagiarism, use of unauthorized electronic devices, for example), it will be considered that the student does not meet the necessary requirements for passing the subject. Depending on the type of unethical behavior detected, it could be concluded that the student has not reached the competencies of the course.

IMPORTANT NOTE: this is the english translation of the subject guide. In the event of any conflict between the English and Spanish versions, the Spanish version shall prevail.

Sources of information

Basic Bibliography

ASHRAE, ASHRAE handbook. Fundamentals, ASHRAE, 2013

ASHRAE, ASHRAE handbook. Refrigeration, ASHRAE, 2014

Yunus A. Çengel, Afshin J. Ghajar, **Heat and mass transfer : fundamentals & applications**, McGraw-Hill Education, 2015

Complementary Bibliography

ASHRAE, ASHRAE handbook: heating, ventilating, and air-Conditioning systems and equipment, ASHRAE, 2012 ASHRAE, ASHRAE handbook : heating, ventilating and air-conditioning applications, ASHRAE, 2015

Wang S.K., Handbook of air conditioning and refrigeration, Mc Graw-Hill, 2001

Torrella Alcaraz E., Navarro Esbrí J., Cabello López R., Gómez Marqués F., **Manual de climatización**, AMV Ediciones, 2005 Carrier Air Conditioning Company, **Manual de aire acondicionado**, Marcombo, 2009

Recommendations

Other comments

In order to take this course it is highly recommended that students have completed courses about thermodynamics, heat transfer and thermal engineering and technology.

In particular, a good background in psychrometrics and psychrometrics processes is strongly recommended.

IMPORTANT NOTE: this is the english translation of the subject guide. In the event of any conflict between the English and Spanish versions, the Spanish version shall prevail.