Universida_{de}Vigo

Subject Guide 2023 / 2024

IDENTIFYIN				
Thermal en				
Subject	Thermal			
	engineering I			
Code	P52G381V01403			
Study	Grado en			
programme	Ingeniería			
	Mecánica			
Descriptors	ECTS Credits	Choose	Year	Quadmester
	6	Mandatory	4th	1st
Teaching	English			
language				
Department				
Coordinator	Cacabelos Reyes, Antón			
Lecturers	Cacabelos Reyes, Antón			
	Febrero Garrido, Lara			
E-mail	acacabelos@cud.uvigo.es			
Web	http://moovi.uvigo.gal			
General	This document shows the competences that the stu	udents must acquire	with the cours	e Advanced
description	Thermodynamics. It contains the calendar with all t	the teaching activitie	es, the syllabus	, the time schedule, an
	estimation of the students working load and the ev	aluation criteria.		
	This course, which is located in the fourth year of the	he mechanical engir	neering bachelo	r degree, explains the
	fundamentals of combustion, the mixture of air and	d water vapor and th	ne main process	ses occurred in thermal
	systems.			

Training and Learning Results

Code

- B1 Skills for writing, signing and developing projects in the field of industrial engineering, whose purpose is, specializing in Mechanics, construction, alteration, repair, maintenance, demolition, manufacturing, installation, assembly or operation of: structures, mechanical equipments, energy facilities, electrical systems and electronic installations and industrial plants, and manufacturing processes and automation.
- C21 Knowledge applied to thermal engineering.
- D1 Analysis and synthesis
- D2 Problems resolution.
- D6 Application of computer science in the field of study.
- D8 Decision making.
- D10 Self learning and work.
- D14 Creativity.
- D16 Critical thinking.
- D17 Team working.

Expected results from this subject			
Expected results from this subject	Tra	aining ar	nd Learning
		Res	ults
Understanding the processes in which humid air is involved and managing of the psychrometric	B1	C21	D1
chart.			D2
			D10
Understanding the fundamentals of combustion.	B1	C21	D1
			D2
			D6
			D10
			D16
			D17

Understanding the newsranduction evelop			C21	D1
Understanding the power production cycles.			C21	D1 D2
				D6
				D10
				D14
Ability to assess any basic thermal process.		B1	C21	D16 D1
Ability to assess any basic merinar process.		01	021	D2
				D6
				D8
				D10 D14
				D14 D16
				D17
To acquire basic knowledge about thermal mach	ines.	B1	C21	D1
				D2
				D8 D10
				D17
ENAEE learning outcome: KNOWLEDGE and UND			C21	
understanding of the mathematics and other bas				
specialisation, at a level necessary to achieve the				
achievement (Basic (1), Intermediate (2) and Adv Intermediate (2)].				
ENAEE learning outcome: ENGINEERING ANALYSI	S: LO2.1 Awareness of the multidisciplinary	B1		D2
context of the engineering [Intermediate (2)].				D8
ENAEE learning outcome: ENGINEERING ANALYSI				D1
	elect and apply relevant methods from established			D2
	nods; to recognise the importance of non-technica omic and industrial constraints [Intermediate (2)].			D8 D14
				D16
	S: LO3.1 The ability to apply their knowledge to			D2
plan and carry out projects that meet previously				
ENAEE learning outcome: RESEARCHING AND IN experiments, interpret data and draw conclusion			C21	
	E: LO5.1 Understanding of applicable techniques	;	C21	
and methods of analysis, design and investigatio	n and of their limitations in their field of study			
[Intermediate (2)].	E: LO5.3 Understanding of applicable materials,	_		D6
	nd processes, and of their limitations in their field			D8
of study [Intermediate (2)].				20
ENAEE learning outcome: COMMUNICATION AND		B1		D8
	, as an individual and as a member of a team and			D10
to cooperate effectively with engineers and non-	engineers [Basic (1)].	-		D17
Contents				
Topic				
BLOCK 1 (B1): Gas-vapor mixtures.	B1-1. Dry air and atmospheric air. Specific and re	elativ	e humidit	ty of the air.
	B1-2 Dew point temperature. Psychrometric cha	ts.		
	B1-3 Air conditioning.			
BLOCK 2 (B2): Combustion and fuels properties.	B2-1. Fuels. Description and characteristics. Boild	ers ar	nd burner	ſS.
	B2-2 The combustion process. Theoretical and a			
	B2-3 Enthalpy of formation, enthalpy of combust	ion a	nd heatin	ig values.
	B2-4 First-law analysis of reacting systems.			

B2-5 Second-law analysis of reacting systems.

BLOCK 3 (B3) Power production cycles.	B3-1 Gas power cycles I: Otto, Diesel, Stirling and Ericsson ideal cycles. Air standard cycles.
	B3-2 Gas power cycles II: Brayton cycle. Actual cycles. Intercooling reheating and regeneration. Ideal jet-propulsion cycles.
	B3-3 Vapor and combined power cycles: Rankine cycle. Actual vapor cycles. Reheating and regeneration. Open and closed feedwater heaters.
	B3-4 Combined gas-vapor power cycles.
BLOCK 4 (B4) Refrigeration cycles.	B4-1 Vapor-compression refrigeration systems: Actual cycles. Refrigerant properties.
	B4-2 Heat pumps.
	B4-3 Innovative vapor-compression refrigeration systems: Cascade refrigeration systems. Multistage compression refrigeration systems. Multipurpose refrigeration systems with a single compressor.
	B4-4 Gas refrigeration cycles.
	B4-5 Absorption refrigeration systems.

PL 1. Introduction to thermal comfort and indoor air quality. The aim of this practice is to determine the air humidity in different indoor stays of buildings and in the outside. Besides, the concept of thermal comfort and indoor air quality are introduced, features that are related with the health and the welfare of the users of buildings. Equipment of measurement employed: hygrometers, sensors of temperature, measurers of quality of indoor air, etc.

PL 2. Fuels and combustion. Boiler room of the students barracks building.

A technical visit will be made to the boiler room of the Francisco Moreno barracks, which consists of two natural gas boilers and provides domestic hot water (DHW) and heating to the student barracks. The purpose of the visit is to identify the equipment involved in a heating system and learn how to make a simplified scheme of the installation. In addition, this practice includes the study of health and safety conditions in a boiler room: identification of risks, emergency measures, PRL, Legionella control, etc.

PL 3. Development and presentation of works on social, health and security features related to Thermal Engineering. In this practice the students have to present the work developed during the first weeks of course. The works are proposed by the lecturers at the beginning of the course and they will be made by groups of 4 or 5 students. The subjects will treat on social, health and industrial security of related to Thermal Engineering. For example: energy efficiency in buildings, energy efficiency in ships, storage and transport of liquid fuels, maritime transport of fuels, thermal solar energy in buildings, renewable energies, cogeneration and trigeneration, etc.

PL 4. Analysis of thermodynamic cycles with computer software. The practice consists of learning the use of computer tools for the simulation of power and refrigeration cycles (CYCLEPAD). The practice is oriented to solve problems of cycles (ideal and real) used in the most common thermal machines.

PL 5. Stirling cycle analysis.

An experimental Stirling engine is studied. Different variables that affect the operation of the engine, the cycle and the performance of the engine will be analyzed. The operation of the reverse cycle motor as a cooling machine will also be studied.

PL 6. Experimental study of a heat pump

In this practice the operation of a heat pump will be studied in an experimental facility. Energy balances will be carried out in each of its components to determine its coefficient of operation (COP), working both as a heating machine and as a cooling machine. Likewise, its behavior will be studied in operation as a water-water heat pump and as an air-water heat pump.

PL 7. Introduction to the design of solar cooling installations. This is a theoretical and demonstrative practice on cooling production installations using solar thermal energy. The aim is for students to learn about an efficient alternative to the use of conventional equipment, whose refrigerants are highly harmful to the environment.

Planning			
	Class hours	Hours outside the classroom	Total hours
Lecturing	28	42	70
Laboratory practical	14	0	14
Seminars	7	7	14
Problem solving	26	26	52
*The information in the planning tab	le is for quidance only and does no	ot take into account the het	erogeneity of the students

Methodologies

Description

Lecturing	In these sessions, the lecturer will explain in detail the basic theoretical contents of the course, exposing clarifying examples that help to better understand the concepts. Computer presentations and the blackboard will be used, especially to transmit information like definitions, charts, algorithms, schematics etc.
Laboratory practical	Supervised laboratory and computer practices. The didactic method to be followed in the teaching of the practical classes consists in that the lecturer supervises the work and progress done by the different groups. The practices of laboratory are headed to strengthen the theoretical concepts tackled in the sessions in the classroom.
Seminars	In the seminars, the lecturer analyses and proposes a series of problems that have to make individually or in group. The student will have to solve exercises and problems under the supervision and correction of the lecturer.
Problem solving	Intensive course of 15 hours for those students that have failed the subject in first announcement, previous to the examination in second announcement. Tutorships in groups with the lecturer. Realisation of examinations. Tasks of evaluation and hours of reinforcement.

Personalized assistance

Methodologies	Description
Lecturing	Attention to student will be personalized both in the office hours and through email. Tutorial actions can be classified into academic or personalized tutoring. In the first case, students will have available office hours in which they can ask any questions regarding the contents, organization and planning of the course. Tutoring can also be individualized, but solving problems related to the activities carried out in groups will be encouraged. In personalized tutoring, each student, individually, can discuss with the lecturer any problem that is blocking an adequate progress in the course, in order to find some kind of solution. Combining both types of action tutorial students are intended to compensate for the different rates of learning through attention to diversity. The lecturers will personally answer the questions and queries of the students, both in person, according to the timetable that will be published on the center's website, and by telematic means (e-mail, videoconference, Moovi forums, etc.) by appointment.
Problem solving	Attention to student will be personalized both in the office hours and through email. Tutorial actions can be classified into academic or personalized tutoring. In the first case, students will have available office hours in which they can ask any questions regarding the contents, organization and planning of the course. Tutoring can also be individualized, but solving problems related to the activities carried out in groups will be encouraged. In personalized tutoring, each student, individually, can discuss with the lecturer any problem that is blocking an adequate progress in the course, in order to find some kind of solution. Combining both types of action tutorial students are intended to compensate for the different rates of learning through attention to diversity. The lecturers will personally answer the questions and queries of the students, both in person, according to the timetable that will be published on the center's website, and by telematic means (e-mail, videoconference, Moovi forums, etc.) by appointment.
Laboratory practical	Attention to student will be personalized both in the office hours and through email. Tutorial actions can be classified into academic or personalized tutoring. In the first case, students will have available office hours in which they can ask any questions regarding the contents, organization and planning of the course. Tutoring can also be individualized, but solving problems related to the activities carried out in groups will be encouraged. In personalized tutoring, each student, individually, can discuss with the lecturer any problem that is blocking an adequate progress in the course, in order to find some kind of solution. Combining both types of action tutorial students are intended to compensate for the different rates of learning through attention to diversity. The lecturers will personally answer the questions and queries of the students, both in person, according to the timetable that will be published on the center's website, and by telematic means (e-mail, videoconference, Moovi forums, etc.) by appointment.
Seminars	Attention to student will be personalized both in the office hours and through email. Tutorial actions can be classified into academic or personalized tutoring. In the first case, students will have available office hours in which they can ask any questions regarding the contents, organization and planning of the course. Tutoring can also be individualized, but solving problems related to the activities carried out in groups will be encouraged. In personalized tutoring, each student, individually, can discuss with the lecturer any problem that is blocking an adequate progress in the course, in order to find some kind of solution. Combining both types of action tutorial students are intended to compensate for the different rates of learning through attention to diversity. The lecturers will personally answer the questions and queries of the students, both in person, according to the timetable that will be published on the center's website, and by telematic means (e-mail, videoconference, Moovi forums, etc.) by appointment.

Assessment

Description

Qualification Training and Learning Results

Lecturing	A final test of continuous evaluation will be done during the evaluation week and will be graded over 10 points. A minimum grade of 4 points in this exam will be necessary to pass the subject in the continuous evaluation. This proof will have a weight of 40% of the grade of continuous evaluation. Two partial exams of continuous evaluation will be done, which will suppose 30% of the grade of continuous evaluation (15% each one of them).	70	B1	C21	D1 D2 D8 D10 D14 D16
Laboratory practical	Lab practices will be performed in small groups. Each group will have to deliver a memory of practices at the end of each practice, or group of practices. The memories of practices will have a weight of 10% of the grade of continuous evaluation.	10	B1	C21	D1 D2 D6 D8 D10 D14 D16 D17
Seminars	A group work will be done about social, health and industrial security features related to Thermal Engineering, that will be presented by the students in the practice 3 of the subject. The group work will have a weight of 10% of the grade of continuous evaluation.	10	B1	C21	D1 D2 D8 D10 D14 D16 D17
Problem solving	Seminars will be graded through individual or group tests or resolution of exercises performed in some of the seminar sessions when the lecturer request. These will mean 10% of the final grade.	10	B1	C21	

Other comments on the Evaluation

The evaluation will be considered positive when a score of 5 is reached for the continuous evaluation. The students must attend the ordinary exam, which addresses the whole subject contents, if the total grade of continuous evaluation is lower than 5. They also will have to attend the ordinary exam if any of the following cases happens:

- Any of the tests or exams is missed.

- A grade lower than 4 points in the final theory exam is obtained.

For these cases, the continuous evaluation grade will be the minimum of 4 points and total continuous evaluation grade. In any case, the student who has passed the continuous evaluation, will be allowed to attend to the ordinary exam to increase the grade.

ACADEMIC INTEGRITY: Students are expected to show adequate ethical behaviour, committing to act honestly. Based on article 42.1 of the *Regulation on the evaluation, qualification and quality of teaching and the student learning process of the University of Vigo,* as well as point 6 of the fifth rule of Order DEF/711/2022, of July 18th, which establishes the requirements for evaluation, progress, and ongoing enrolment in military educational training centres for incorporation into the ranks of the Armed Forces, any violation of academic integrity in the assessment process, as well as the cooperation in it will result in the assignment of a failing grade to the student (zero) for the entire course in the corresponding assessment opportunity, regardless of the percentage of importance that the test in question had in the overall continuous assessment and independently of other disciplinary actions that may be applied.

Sources of information	
Basic Bibliography	
Çengel Y.A., Boles M.A., Thermodynam	ics. An Engineering Approach., 7ª edition, Mc Graw-Hill, 2012
Morán, M.J. Shapiro, H.N., Fundamenta	s of Engineering Thermodynamics., 2ª edition, Wiley, 2018
Complementary Bibliography	
Incropera, F.P., De Witt, D.P., Fundame	ntos de Transferencia de Calor, 4ª edición, Pearson, 2000
Wark, K., Richards, D.E., Termodinámic	a , 6ª edición, Mc Graw-Hill, 2001
Haywood, R.W., Ciclos termodinámico	s de potencia y refrigeración, Limusa, 2000
Segura, J., Termodinámica Técnica , Re	everte, 1988
Baehr, H.D., Tratado moderno de tern	nodinámica, Tecnilibro, 1987
Kreith, F., Bohn, M.S., Principios de Tra	i nsferencia de Calor , 6ª edición, Thomson, 2002
Holman, J.P., Transferencia de Calor , 8	^{3ª} edicióm, Mc Graw-Hill, 1998
Agüera Soriano, J., Termodinámica Lóg	ica y Motores Térmicos, Ciencia 3,

Segura, J., Rodríguez, J., Problemas de Termodinámica Técnica, Reverte, 1990

Lacalle, Nieto, **Problemas de Termodinámica**, Serv Pub. ETSII Madrid, Aguirrezabalaga, V., **Transferencia de Calor: Problemas**, Serv Pub. Oviedo, 2006 Vázquez, M, **Problemas Resueltos de Termodinámica Técnica**, Serv Pub. Universidad de Vigo,

Recommendations

Subjects that continue the syllabus

Naval engines and machines/P52G381V01409

Other comments

It is strongly recommended to review the "Thermodynamics and heat transfer" course, especially those topics related to energy balances, thermal properties of materials and ideal gases behavior. It is also recommended to review the chemical reactions fundamentals.