Universida_{de}Vigo

Subject Guide 2023 / 2024

			Subje	ect Guide	2023 / 2024
IDENTIFYIN	G DATA				
Electronic t	echnology				
Subject	Electronic				
	technology				
Code	P52G381V01301				
Study	Grado en				
programme	Ingeniería				
	Mecánica				
Descriptors	ECTS Credits	Choose	Year		mester
	6	Mandatory	3rd	1st	
Teaching	Spanish				
language					
Department	Transfer Destaving Free days Manual				
Coordinator	Troncoso Pastoriza, Francisco Manuel				
Lecturers	Falcón Oubiña, Pablo				
F mail	Troncoso Pastoriza, Francisco Manuel				
E-mail	ftroncoso@cud.uvigo.es				
Web General	http://moovi.uvigo.gal	lanta with the theoret	ical and prostical for	<u>n da na a ni</u>	tal
description	The objective of this course is to provide the stud knowledge in electronics' five main areas: analog				
description	electronics and communications electronics.	l electronics, digitar el	ectionics, industria	I Selisors	, power
	d Learning Results				
Code					
	dge in basic and technological subjects that will en	able students to learr	new methods and	theories	, and
	them the versatility to adapt to new situations.				
	dge of the fundamentals of electronics.				
	ns resolution.				
	nowledge.				
	rning and work.				
D17 Team w	orking.				
Expected re	esults from this subject				
	sults from this subject		Tra	aining ar	nd Learning
				Res	ults
To know of t	he operation of electronic devices.		B3	C11	D2
					D9
					D10
					D17
	oning and data acquisition electronic systems and	devices.		C11	D10
	ifferent types of industrial sensors.			C11	D10
To know the	basics of a digital electronic system.			C11	D2
					D9
					D10
Ta lua con la	in all advanting allows the fact data to a survey of the bi		D 2		D17
TO KNOW Das	ic electronic circuits for data communications.		B3	C11	D9
					D10
	NING OUTCOME: KNOWLEDGE AND UNDERSTANDI	NG		C11	

LO 1.3 Be aware of the multidisciplinary context of engineering. (level of development of this sub-learning outcome: Basic (1))

ENAEE LEARNING OUTCOME: ENGINEERING ANALYSIS LO 2.2 Ability to identify, formulate and solve engineering problems within an specialty; choose and apply properly analytical methodologies; recognize the importance of social, health and safety, environmental, economic and industrial restrictions. (Medium (2))	D2 D9
ENAEE LEARNING OUTCOME: COMMUNICATION AND TEAMWORK	D10
LO 7.2 Ability to operate properly within national and international contexts, both individually and as a team, and cooperate with engineers and/or people from other disciplines. (Medium (2))	D17
ENAEE LEARNING OUTCOME: CONTINUOUS EDUCATION LO 8.1 Ability to realize the need for continuous training and undertake this activity throughout their professional life on their own. (Medium (2))	D10
ENAEE LEARNING OUTCOME: CONTINUOUS EDUCATION LO 8.2 Ability to stay up-to-date on science and technology. (Basic (1))	D10

Contents	
Торіс	
Digital Electronics	- Basic concepts
	 Logical values: positive and negative logic
	 Logical families: TTL, ECL, CMOS
	 Binary functions and basic logic blocks
	- Truth table
	- Karnaugh maps
	- Basic integrated circuits
	 Design of basic combinational digital systems
Operational Amplifiers	- Basic concepts
	- Differential amplifier and operational amplifier
	 The op. amp.: terminals, feedback, virtual shortcut
	 Op-Amp circuits with closed-loop and negative feedback: inverting and
	non-inverting amplifiers, summing amplifier, differential amplifier,
	integrator, differentiator,
	 Design of analog systems based on operational amplifiers
The diode	- Basic concepts
	- Semiconductors
	- The diode
	- The zener diode
	- Other diodes: LED, photodiode, etc.
	- Applications
The Bipolar Junction Transistor (BJT)	- Structure
	- BJT operation
	- Polarization, load line analysis and operating point (Q)
	- Applications
Field-Effect Transistor (JFET)	- Structure
-	- Families of FET transistors
	- Polarization
	- Applications
Small-Signal Amplifiers	- Amplifier gain: voltage amplifier, current amplifier
	- Input impedance
	- Output impedance
	- Small-signal model for BJT
	- Small-signal model for JFET
Applications	- Data acquiring systems
	- Sensors and actuators
	- Analog to digital converter
	- Design of digital and analogical electronic systems
	- Industrial communications
Practice 1: Circuit simulation	The goal of this practice is to introduce the Autodesk Tinkercad electronic
	circuit simulation software to carry out assemblies with digital electronic
	elements focused on solving basic engineering problems. This software
	will be used to complement the laboratory assemblies during practice
	sessions 3 to 6, allowing a first contact in a more accessible and simple
	way before transferring the simulated scheme to the real prototype.
Practice 2: Digital Electronics	This practice introduces the student to digital combinational circuits by
	assembling basic circuits within a protoboard.
Practice 3: Basic electronic circuits with	The goal of this practice is introducing the closed-loop operation of these
operational amplifiers	types of amplifiers, by assembling different circuits within a protoboard.

Practice 4: Basic electronic	circuits with diodes
------------------------------	----------------------

Practice 4: Basic electronic circuits with diodes	This practice shows the student different circuits for diodes (rectifiers, trimmers,), by assembling them in a protoboard and testing them with different input signals.
Practice 5: Basic electronic circuits with transistors	This practice shows basic circuits with transistors (mainly BJT) in order to show the polarization concepts shown in theory.
Practice 6: Multistage amplifier design	This practice tries to merge all the concepts learned during the course for analog devices by designing a simple multistage amplifiers conformed by a small-signal amplifiers followed by one (or more) stages of high power amplifiers (wit op-amps).
Practice 7: Laboratory evaluation test	This is a test where the ability acquired by the student for the simulation and assembly of electronic circuits and the verification of its operation with the instruments used in the practices will be evaluated. The test will consist of two parts: the first one will be dedicated to the simulation in the Tinkercad program, and the second will consist of the assembly and validation of a proposed electronic circuit, which will include various components treated during the rest of the laboratory sessions.

Planning			
	Class hours	Hours outside the classroom	Total hours
Lecturing	28	42	70
Laboratory practical	12	12	24
Seminars	22	0	22
Problem and/or exercise solving	7	13	20
Problem and/or exercise solving	1.5	2	3.5
Problem and/or exercise solving	1.5	2	3.5
Laboratory practice	2	2	4
Laboratory practice	3	0	3
*The information in the planning table is fo	r guidance only and does no	t take into account the het	erogeneity of the students.

Methodologies	Description
Lecturing	They will consist in an oral explanation by the lecturer of the most important parts of the course, al related with the materials that the student had to work previously. This is intended to favor the active participation of the students, that will have occasion to rise doubts and questions during the sessions. Active participation is desired during all the sessions.
Laboratory practical	During these sessions, in the classroom, interleaved with the lectures, the lecturer will proceed to solve examples and/or exercises that properly illustrate the problems to solve. As long as the number of participants in the classroom allows, active participation will be promoted.
Seminars	Previous preparation of the theoretical sessions: Prior to the start of the theoretical sessions, the students will have available a series of materials that have to prepare, as the sessions will relay on them.
	Previous preparation of the laboratory sessions: It is mandatory that the students make all the assigned previous tasks prior to access the laboratory. These task are intended to greatly improve the laboratory knowledge acquisition. The achieved report will be taken into account when the laboratory session is to be evaluated.

Methodolog	ies Description
Seminars	In the scope of tutorial action, academic tutoring actions and personalized tutoring are distinguished. Within the first option, students will have tutoring hours where they can ask questions related to the subject contents, organization and/or planning. In personalized tutoring hours, each student, individually can discuss with the lecturer any problem regarding his/her understanding of the subject. Both tutorial actions aim to compensate the different learning rhythms through attention to diversity. The lecturers o the subject will personally answer the questions and queries of the students, according to the schedule that will be published on the website of the center, such as through telematic means (email, videoconference, MOOVI forums, etc.) under the modality of previous appointment.

Assessment

Description

Qualification Training and Learning Results

Problem and/or exercise solving	Final exam to evaluate the global knowledge acquired of the subject, due at the end of the semester.	40	B3	C11	D2 D9 D10
Problem and/or exercise solving	First assessable test of the knowledge acquired up to that moment (approximate date: around the 5th week of the semester).	15	B3	C11	D2 D9 D10
Problem and/or exercise solving	Second assessable test, corresponding to themes 3, 4 and 5 (approximate date: 9th week of the semester).	15	B3	C11	D2 D9 D10
Laboratory practice	Resolution of practical problems, attitude, cleaning and care of the material (approximate date: practical sessions 1 to 6)	15	B3	C11	D2 D9 D10 D17
Laboratory practice	Laboratory exam where the ability to understand, ensemble and simulate basic electronic circuits are tested (approximate date: last practice session).	15	B3	C11	D2 D9 D10 D17

Other comments on the Evaluation

The student evaluation and qualification criteria proposed for this subject are set out. Given the peculiarities of the Centro Universitario de la Defensa, where this subject will be taught, and taking into account that the students are in a boarding school, only evaluation criteria for assistants are proposed.

Ordinary call:

Continuous evaluation

In the ordinary call, a process of continuous evaluation is carried out in which the weight of the different parts in which the subject is structured over the final mark is as follows:

- Knowledge of theory (T): 70%
- Practical knowledge (L): 30%

Knowledge of theory:

The theory knowledge part is evaluated by combining two scoring tests and a final exam as follows:

- Partial exam 1 (P1):
 - A test of approximately 1 hour and a half in length and preferably located at the end of themes 1 and 2 of the subject.
 - $\circ~$ Weight: 15% of the continuous assessment score (NEC).
 - $\circ~$ It is qualified with 10 points.
 - Made individually.
 - It can take the form of a multiple choice questionnaire, short answer questionnaire, problem solving or some combination of the above.
 - There is no minimum qualification.
- Partial Exam 2 (P2):
 - A test of approximately 1 hour and a half, preferably located at the end of themes 3 and 4 of the course.
 - $\circ~$ Weight: 15% of the continuous assessment score (NEC).
 - It is qualified with 10 points.
 - $\circ~$ Made individually.
 - It can take the form of a multiple choice questionnaire, short answer questionnaire, problem solving or some combination of the above.
 - There is no minimum qualification.
- Final exam (EF):
 - $\circ~$ Exam to be taken on the evaluation dates.

- Weight: 40% of the continuous assessment score (NEC).
- It is qualified with 10 points.
- Made individually.
- They can be in the form of a multiple choice questionnaire, short answer questionnaire, problem solving or some combination of the above.
- A minimum qualification of 4.0 is required.

Practical knowledge:

The practical part of the course is assessed by means of a practical laboratory test, as follows:

- Practical laboratory exam (PL):
 - During each practical session, the student will be asked various questions or simulation and assembly
 exercises that they must carry out during the corresponding session. The attitude of the student during the
 class will also be evaluated, as well as the cleanliness of the workplace at the end of the practice and the care
 of the material provided in the laboratory.
 - The realization of the test is individual.
 - $\circ~$ Weight: 15% of the continuous evaluation score (NEC).
 - It is qualified with 10 points for each laboratory session.

• There is no minimum qualification exclusive to this item.

- Practical laboratory exam (EL):
 - This is a test to evaluate the ability acquired by the student to simulate and assemble electronic circuits and to check their operation with the instruments used in the practices.
 - $\circ~$ The realization of the test is individual.
 - Weight: 15% of the continuous evaluation score (NEC).
 - It is qualified with 10 points.

• There is no minimum qualification exclusive to this item.

Final mark and minimum requirements to pass the course through continuous assessment:

To ensure that the student has acquired the minimum skills in each of the aspects of the subject, students will be required to achieve a minimum score of 4.0 out of 10 in the final exam of theory (EF), and a minimum score of 4.0 out of 10 in the practical part (L).

In this way, the final mark in continuous assessment (NEC) is calculated using the following formulas, a minimum mark of 5.0 in the NEC being necessary to pass the course:

NEC = 0.15*P1 + 0.15*P2 + 0.4*EF + 0.15*PL + 0.15*ELIn the event that the minimum mark required in any of the parts is not reached, the final mark for continuous assessment will be calculated as:

NEC = min(4.0, NEC)

The student who does not pass the course in continuous evaluation must take the ordinary exam. **Ordinary exam**

- Knowledge of theory (T): 70%
- Practical knowledge (L): 30%

Theory:

Consists of:

- A single exam, of approximately 3 hours, to be performed within the course calendar.
- It is qualified with 10 points (T).
- Individual.
- It can include tests, short questions and/or problems or a combination of them.

Laboratory:

Consists of:

- A single practical exam, of approximately 45 min, at the laboratory, related to the practical contents of the subject.
- It is qualified with 10 points (L).
- Individual.

Final mark and minimum requirements to pass the subject:

The final mark (NEO) will be computed following the next equation:

NEO = 0.7 * T + 0.3 * L

A minimum of 4.0 out of 10 points are required for the T exam, and a minimum of 4.0 out of 10 points are required for the L exam. Once obtained these minimums, a punctuation equal or higher than 5.0 points over 10 in the total computation of NEO is mandatory to pass the subject.

Extraordinary exam:

The students that did not pass the subject on first convocatory must attend the second convocatory (or extraordinary exam), that will have the same structure, exam duration, percentages and minimum points required than in the ordinary exam.

ACADEMIC INTEGRITY: Students are expected to show adequate ethical behaviour, committing to act honestly. Based on article 42.1 of the *Regulation on the evaluation, qualification and quality of teaching and the student learning process of the University of Vigo*, as well as point 6 of the fifth rule of Order DEF/711/2022, of July 18th, which establishes the requirements for evaluation, progress, and ongoing enrolment in military educational training centres for incorporation into the ranks of the Armed Forces, any violation of academic integrity in the assessment process, as well as the cooperation in it will result in the assignment of a failing grade to the student (zero) for the entire course in the corresponding assessment opportunity, regardless of the percentage of importance that the test in question had in the overall continuous assessment and independently of other disciplinary actions that may be applied.

Sources of information
Basic Bibliography
Malvino, Albert; Bates, David J., Principios de Electrónica , 7ª,
E. Mandado, Sistemas Electrónicos Digitales, 10ª,
Complementary Bibliography
R. Pallás Areny, Sensores y acondicionadores de señal , 4ª,
J. Millman, Microelectrónica. Circuitos y sistemas analógicos y digitales , 4ª,
N. R. Malik, Circuitos Electrónicos. Análisis, simulación y diseño, 1ª,
T. L. Floyd, Fundamentos de Sistemas Digitales , 9ª,

Recommendations