Universida_{de}Vigo

Coordinator Lorenzo Cimadevila, Henrique

hlorenzo@uvigo.es

http://faitic.uvigo.es/

Lorenzo Cimadevila, Henrique

Subject Guide 2018 / 2019

IDENTIFYIN	G DATA				
Topography	y, remote sensing and geogr	aphic information s	ystems		
Subject	Topography,				
	remote sensing				
	and geographic				
	information				
	systems				
Code	P03G370V01403				
Study	(*)Grao en				
programme	Enxeñaría Forestal				
Descriptors	ECTS Credits	,	Choose	Year	Quadmester
	9		Mandatory	2nd	2nd
Teaching	Galician	,	'	'	
language					
Department	Natural Resources and Environ	ment Engineering			

_		
Cam	natai	ncina
CUIII	nerei	
COIII	pete	ncies

Lecturers E-mail

Code

Web

General description

A2 That students know how to apply acquired knowledge and their capacity to solve problems in new or unfamiliar environments within broader (or multidisciplinary) contexts related to their area of study

adquisición e xestión de datos espaciais mediante SIX e Teledetección.

A4 That the students know how to communicate their conclusions -and the knowledge and ultimate reasons that sustain them- to specialized and non-specialized audiences in a clear and unambiguous way

(*)Trátase dunha materia que versa sobre os instrumentos e métodos utilizados para a realización de medición

de precisión sobre o terreo e a súa representación a escala. Se abordan tamén as novas metodoloxías de

- A5 That students have the learning skills that allow them to continue studying in a way that will be largely self-directed or autonomous.
- B1 Ability to understand the biological, chemical, physical, mathematical and representation systems necessary for the development of professional activity, as well as to identify the different biotic and physical elements of the forest environment and renewable natural resources susceptible to protection, conservation and exploitations in the forest area
- B4 Ability to evaluate and correct the environmental impact, as well as apply the techniques of auditing and environmental management.
- Ability to measure, inventory and evaluate forest resources, apply and develop silvicultural techniques and management of all types of forest systems, parks and recreational areas, as well as techniques for harvesting timber and non-timber forest products
- B7 Ability to solve technical problems derived from the management of natural spaces.
- B13 Ability to design, direct, elaborate, implement and interpret projects and plans, as well as to write technical reports, recognition reports, assessments, appraisals and appraisals.
- B14 Ability to understand, interpret and adopt scientific advances in the forest field, to develop and transfer technology and to work in a multilingual and multidisciplinary environment
- C1 Knowledge of representation techniques. Capacity for spatial vision. Standardization. Topographical drawing. Computer programs of interest in engineering: computer-aided design.
- C16 Ability to know, understand and use the principles of: topography and stakeout. Geographic information systems and remote sensing. Computer programs for spatial data processing.
- D5 Capacity for information management, analysis and synthesis
- D6 Organization and planning capacity
- D8 Ability to solve problems, critical reasoning and decision making
- 79 Teamwork skills, skills in interpersonal relationships and leadership.
- D10 Autonomous Learning

Learning outcomes

Expected results from this subject	Training and Learning Results				
New	A2	B1	C1	D5	
	A4	B4	C16	D6	
	A5	В6		D8	
		В7		D9	
		B13		D10	
		B14			

Contents		
Topic		
Topography	 Introduction to Geodesy and Cartography Instruments Methods: radiation, itineraries, intersecting Stake 	
Remote sensing	Physical fundamentalsSensors and PlatformsDigital image processingApplications	
Geographic information systems	 SIX concept Models and Data Structures Vector GIS SIG raster Insert digital terrain modes 	

Planning			
	Class hours	Hours outside the classroom	Total hours
Problem solving	25	50	75
Seminars	3	3	6
Lecturing	1	1	2
Problem solving	3	3	6
Laboratory practices	10	20	30
Computer practices	16	32	48
Lecturing	20	40	60
Short answer tests	1	0	1
Laboratory practice	3	0	3
Practices report	10	0	10

^{*}The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies	
	Description
Problem solving	Activity which formulated problem and / or exercises related to the course. The student should develop appropriate solutions or right through the exercise routines, application of formulas or algorithms, application processing procedures available information and interpretation of the results. It is often used to complement the lecture.
Seminars	Activities focused to work on a specific topic, allowing delve or supplement the contents of the field. They can be used to supplement the lectures.
Lecturing	Presentation by the teacher of the contents on the subject under study, theoretical and / or guidelines for a job, exercise or project to be developed by the student.
Problem solving	Activity which formulated problem and / or exercises related to the course. The student should develop appropriate solutions or right through the exercise routines, application of formulas or algorithms, application processing procedures available information and interpretation of the results. It is often used to complement the lecture.
Laboratory practices	Activities application of knowledge to specific situations and basic skills acquisition and related procedural matter under study. Special spaces are developed with specialized equipment (scientific and technical laboratories, languages, etc.).
Computer practices	Activities application of knowledge to specific situations, and the acquisition of basic skills and procedural matters related to the object of study, which are held in computer rooms.
Lecturing	Presentation by the teacher of the contents on the subject under study, theoretical and / or guidelines for a job, exercise or project to be developed by the student.

Personalized attention		
Methodologies	Description	
Lecturing		

Problem solving Seminars Laboratory practices Tests Description

Assessment						
	Description	Qualification	Tra	aining an	d Learning Results	
Lecturing	(*)Exame teórico	20	B7 B14	C16		
Problem solving	(*)Exame práctico	30	В7	C16	D6	
Short answer test	s (*)Proba tipo test	10	В7	C16		
Laboratory practi	ce(*)Traballo práctico	40	В7	C16	D6	
	•		B14		D8	
					D9	

Other comments on the Evaluation

Sources of information
Basic Bibliography
Complementary Bibliography
BOSQUE SENDRA, J, Sistemas de Información Geográfica., 2004
CHUVIECO, E., Fundamentos de Teledetección Espacial., Rialp, 2000
MUÑOZ SAN EMETERIO, C, Problemas básicos de Topografía. , Ed Bellisco., 2005
SANJOSÉ BLASCO, JJ, Topografía para estudios de grado. , Bellisco, 2004
WOLF & BRINKER., Topografía , Alfaomega, 2008

Recommendations

Practices report