Universida_{de}Vigo

Subject Guide 2024 / 2025

×		MH	Subje	ct Guide Z	024 / 2025
IDENTIFYIN					
	video analysis				
Subject	Image and video				
Cada	analysis				
Code	V05G306V01416				
Study	Grado en Ingeniería de Tecnologías de				
programme	Telecomunicación				
Descriptors		Ye	ar	Quadme	ester
Descriptors	6 Optional			lst	
Teaching	English		1	130	
language	Ligisi				
Department					
	Alba Castro, José Luis				
Lecturers	Alba Castro, José Luis				
E-mail	jalba@gts.uvigo.es				
Web	http://moovi.uvigo.gal				
General	This subject is the continuation of the one of 3 ^o Image Processing	n Fundament	als. The stude	nt will aco	wire
description	knowledges and competence on high level techniques to analyse				
	different applications.	- J			
	The subject is taught and evaluated in English. The documentation	on is in Englis	sh.		
		-			
Training ar	nd Learning Results				
Code					
	he ability to solve problems with initiative, to make creative decisi	ons and to co	ommunicate a	nd transm	it
	dge and skills, understanding the ethical and professional respons				
	er activity.	,			
	he ability to work in multidisciplinary groups in a Multilanguage en	vironment ar	nd to commur	icate, in w	riting and
	knowledge, procedures, results and ideas related with Telecommu				5
B10 CG10 T	he ability for critical reading of scientific papers and docs.				
	he development of discussion ability about technical subjects				
C73 (CE73/	OP16) The ability to construct, exploit and manage artificial vision,	medical ima	iging, and mu	ltimedia da	ata base
system	S.				
	derstanding Engineering within a framework of sustainable develo				
	courage cooperative work, and skills like communication, organiza				
	Iltilingual and multidisciplinary work environment, which promotes	education for	or equality, pe	ace and re	espect for
fundam	nental rights.				
Expected r	esults from this subject				
	sults from this subject		Traiı	ning and L	earning
				Results	
Understand	the foundations of standard techniques to analyze images.		B10		D2
			B12		
Apply image	analysis techniques in computers.		B9	C73	D4
			B12		
Understand	the foundations of image description techniques in advanced syst	ems.	B10		D2
			B12		
Identify diffe	erent analysis necessities for different imaging systems.		B9	C73	D4
			B12		
Design an ir	nage and video analysis and description system.		B4	C73	D4
			B9		
					_

Contents

Торіс

Image analysis	Overview of color spaces. Spatial filters.Filters and the convolutional networks. Segmentation based in colour, textures, outlines and models. Segmentation by means of trained models. Extraction of descriptive characteristics and invariants. There will be a hands-on practice for this part, programming a small project.
Description and classification of objects.	Clustering. Image descriptors. Classical and probabilistic decisors. Classification. convolutional neural networks (CNN). Deep learning based object detection. There will be a hands-on practice for this part, programming a small project.
Applications	Description of end-to-end pipeline processing. Classical approximation, with models of deep and hybrid learning. Real-time video processing There will be a hands-on practice for this part, programming a small project.

Planning			
	Class hours	Hours outside the	Total hours
		classroom	
Lecturing	10	10	20
Mentored work	24	82	106
Presentation	3	6	9
Introductory activities	3	0	3
Objective questions exam	2	0	2
Report of practices, practicum and external pract	ices 0	10	10
*The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.			

Methodologies	
	Description
Lecturing	Each 3-hour class will include one hour of explanation of subject contents, encouraging critical discussion and assimilation through computer programming and visualization.
Mentored work	Each 3-hour session will include 2 hours of "hands-on" working to assimilate the explained concepts through problem-based learning (PBL). Every Problem/Task will take several weeks of the subject during which the student will have to discover, alone or with the professor guidance, what he needs to solve the problem effectively.
Presentation	The third and last task will be presented in front of the class mates. The students from the same group will have to split the presentation, so both of them explain one part of the work.
Introductory activities	In the first class of the course, concepts learned in FPI and the programming tools for the course will be reviewed.

Personalized assistance			
Methodologies	Description		
Introductory activities	The introductory activities are related to motivation for learning how to to develop projects in real- life.		
Lecturing	During the master sessions, the teacher asks questions to the class and/or specific student to grab their attention about the current topic.		
Mentored work	This methodology gives a lot of room for personalized attention. The teacher sits with each of the groups and guides every student through the step-by-step process of building a solution.		
Presentation	Every time a student has to deliver a presentation (in the last guided task and also when challenged to beat another group in a specific subtask), the teacher explains him/them how to improve the impact of their presentation.		

Assessment Qualification Training and Learning Results Objective Each part of the subject has theoretical concepts that are explained in class. 30 B10 C73 questions exam The concepts are assessed through these tests, that are also formally linked to the delivery of each guided task. They are meant to grade each student individually. They help to assess general competence A82. The concepts are discussed in class and also individually through the e-learning platform and/or counseling hours. B12

Report of practices,	Each part of the subject is learnt through a hands-on guided task. Most of the teacher's time is devoted to discuss, both in group and individually, how to go	70
practicum and external	step by step through the process of building a solution. The score of the guided task includes: the follow-up of each student, the techniques used, the results	
practices	achieved, the quality of the report and the oral presentation of the last one. The	
	guided tasks help to assess general competences A4, A82, B1 and B3.	

0	Β4	C73	D2
	B9		D4

Other comments on the Evaluation

The language of instruction and assessment is English.

Attendance in Continuous Assessment (CA) is mandatory, except under exceptional circumstances. CA is used to evaluate the course, based on the student's work in the laboratory and assignments related to the course content.

There is a Global Assessment (GA) exam on the official date set by the School Board, for students who have not passed CA and wish to pass the course. This GA exam will be graded from 0 to 10 points and includes all course topics along with concepts and techniques explained in the assignments. To pass, the student must score at least five points. Students who wish to improve their CA grade may also take this exam, in which case the final course grade will be the higher of the CA grade or the GA grade.

Throughout the semester, students will receive feedback on their progress in CA, along with the grades of each assignment and associated tests. Submitting any assignment or test constitutes official participation in CA, implying that the student has registered for the course even if they do not take the final exam.

The extraordinary opportunity at the end of the academic year will consist of an exam for students who have not passed either CA or GA. The course grade will be the grade of this extraordinary exam. This exam will be graded from 0 to 10 points and includes all course topics. To pass, the student must score at least five points.

In conducting academic activities for this course, the use of generative artificial intelligence (GAI) is permitted and encouraged. Its use should be ethical, critical, and responsible. If GAI is used, any results it provides should be critically evaluated, and any citations or references generated should be carefully verified. Additionally, the use of such tools must be declared. Failure to declare their use will be considered another form of plagiarism.

If plagiarism is detected in any tests or assignments, the final grade will be FAIL (0) and the incident will be reported to the school administration for appropriate action.

Sources of information Basic Bibliography Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing, 3ª (2008), Robert Laganière, OpenCV 2 Computer Vision Application Programming Cookbook, 2011, Complementary Bibliography Richard O. Duda, Peter E. Hart, David G. Stork, Pattern Classification, 2ª (2001),

Recommendations

Subjects that it is recommended to have taken before

Fundamentals of Sound and Image/V05G301V01209 Fundamentals of Image Processing/V05G301V01333 Multimedia Signal Processing/V05G301V01321 Video and Television/V05G301V01329