Universida_{de}Vigo

Subject Guide 2024 / 2025

IDENTIFYIN	• =			
	l Computing			
Subject	Distributed			
	Computing			
Code	V05M145V01321			
Study	Máster			
programme	Universitario en			
	Ingeniería de			
	Telecomunicación			
Descriptors	ECTS Credits	Choose	Year	Quadmester
	5	Optional	2nd	1st
Teaching	Spanish			
language				
Department				
Coordinator	Mikic Fonte, Fernando Ariel			
Lecturers	Burguillo Rial, Juan Carlos			
	Mikic Fonte, Fernando Ariel			
	Rodríguez Hernández, Pedro Salvador			
E-mail	mikic@det.uvigo.es			
Web	http://moovi.uvigo.es			
General	This course will provide a vision of group of the mo	ost usual technologie	es inside the dist	ributed computing. They
description	will tackle subjects such as the distributed transac			
-	intelligence; and the parallel and evolutionary con	nputing.		

We will use Spanish and Galician languages in classroom, and English language for the instructional materials.

T et al	in the second to second a second s		
_	ining and Learning Results		
Cod			
A2	CB2 Students must apply their knowledge and ability to solve problems in new or unfamiliar environments within broader (or multidisciplinary) contexts related to their field of study.		
A4	CB4 Students must communicate their conclusions, and the knowledge and reasons stating them-, to specialists and non-specialists in a clear and unambiguous way.		
A5	CB5 Students must have learning skills to allow themselves to continue studying in largely s way	self-directed or autonomous	
B8	CG8 Ability to apply acquired knowledge and to solve problems in new or unfamiliar environments within broader an multidiscipline contexts, being able to integrate knowledge.		
C24	CE24/TE1 Ability to understand the fundamentals of distributed systems and distributed cor application in the design, development and management in grid, ubiquitous computing scen		
Exp	ected results from this subject		
Exp	ected results from this subject	Training and Learning Results	
To e	earn skills in the design, development and management of distributed systems.	A2 B8 C24	
To understand the functional bases of the distributed systems.		A4 A5 C24	
To k	mow the distinct concepts related with the distributed computing.	A5 B8 C24	
To e	earn skills for the application of intelligent systems in the distributed computing.	A2 A5 B8 C24	

To learn how to distribute the execution of tasks for the resolution of problems and optimisation by means A2 of evolutionary and parallel computing. A4

Торіс	
Theory 1. Distributed artificial intelligence	1. Intelligent agents and multiagent systems
	2. Theory of games applied to multiagent systems: coordination,
	competition, negotiation, auctions, electronic trade
	Complex distributed systems and auto-organised ones
Theory 2. Parallel and evolutionary computation	1. Distributed Computing and parallelization
	2. Algorithms and evolutionary programming: genetics, memetics,
	differential evolution, intelligence of swarm.
	3. Optimisation by means of evolutionary technics and parallelization
Theory 3. Transactions	1. Concurrency problems
	2. Recoverability problems
	3. Deadlocks
	4. Optimistic concurrency control
	5. Timestamps
Theory 4. Replication	1. Introduction to replication
	Case studies of high available services (Bayou and Coda)
	3. Transactions with replicated data
Theory 5. Design of distributed systems	1. Google case study
Practice 1. Multi-node cluster with Hadoop	Part 1: Installation.
Distributed File System.	Part 2: Developing a program analyzing Big Data using distributed
	Hadoop.
Practice 2: Introducing the basics for using	Part 1: Evolutionary algorithms.
evolutionary algorithms in optimization processe	s Part 2: Decentralized evolutionary algorithms.
by means of parallel computing on Spark	

Planning			
	Class hours	Hours outside the classroom	Total hours
Lecturing	17	47	64
Project based learning	10	45	55
Report of practices, practicum and external practices	ctices 0	3	3
Objective questions exam	1	0	1
Objective questions exam	2	0	2
*The information in the planning table is for guid	dance only and does no	ot take into account the het	erogeneity of the students.

Methodologies	
	Description
Lecturing	Theoretical classes with practical cases. Besides, problems will be proposed for solving them in
	autonomous way (A5 and C24).
Project based learning	The students, in groups, will develop a software system with specific requirements. The follow-up of
	the project will be carried out during the B sessions (A2, A4, A5, B8).

Methodologies	Description
Lecturing	Tutorships: Fernando A. Mikic Fonte: https://moovi.uvigo.gal/user/profile.php?id=11299 Pedro S. Rodríguez Hernández: https://moovi.uvigo.gal/user/profile.php?id=11584 Juan Carlos Burguillo Rial: https://moovi.uvigo.gal/user/profile.php?id=11297
Project based learning	The students, organized in groups, develop a project that addresses the design and implementation o a service-oriented architecture. Personalized attention related to these projects will take place in the sessions type B in the course. In each session of personalized attention, groups would discuss with the teacher the following questions concerning the progress of the project: What work has been addressed since the previous meeting?, What problems have been found?, What problems have not been solved?, and what is the planning of future work?

Assessment

Description

Qualification Training and Learning Results

Project based learning	The students, organized in groups, will develop a solution to a software system with specific requirements.	35	A2 A4 A5	B8
Report of practices, practicum Detailed report of the tasks during the practices of laboratory				
and external practices	carried out in group.			
Objective questions exam	Series of short answer questions and/or multiple choice.	20		C24
Objective questions exam	Series of short answer questions and/or multiple choice.	40	A5	C24

Other comments on the Evaluation

Students can, at ordinary exam, decide to be assessed according to a continuous assessment model or by global assessment. During the first week of the course, students must notify the subject coordinator about their choice. In case of choosing continuous assessment, a period of 1 month is offered to be able to renounce it. Once the students choose the continuous assessment model, their grade can never be "Not Submitted". For extraordinary exam the students will be evaluated using the modality of "global assessment" (some modifications over the original practices can be required). The scores obtained in ordinary exame are not preserved for extraordinary exam.

Plagiarism and copying are not allowed. In the event of detection of plagiarism or copying in any of the tests, the final grade will be FAIL (0) and the fact will be communicated to the Center's management for appropriate purposes.

1- CONTINUOUS ASSESSMENT

To pass the course requires a minimum score of 5 points. The score will be the result to add the scores received in each one of the following parts:

- Exam 1:
 - Dates: Approved in the Comisión Académica de Grado (CAG), they will be available at the beginning of the academic semester.
 - Individually
 - $\circ~$ Contents: Theoretical content given until this moment
 - Type: Series of short answer questions and/or test type ones
 - Maximum score = 2 points
- Exam 2:
 - Dates: Official calendar (coinciding with the global assessment for those that opted by this modality)
 - Individually
 - Contents: Theoretical content given until this moment excepting those that already were assessed in the Exam 1.
 - Type: Series of short answer questions and/or test type ones
 - Maximum score = 4 points
- Practice:
 - Dates: Throughout the semester (not being compulsory practices).
 - In group:
 - Reports / memories of practice and Laboratory practice: A personalized score is asigned to each member of the group according to the following:
 - Final score of practices = (Memory + Practice) * Weighting factor
 - Memory maximum score = 0.5 points
 - Practice maximum score = 3.5 points (verification of the correct operation of the practice and of possible changes to be made in it, in group or individually).
 - Weighting factor = (Follow-up by the teacher + Peers assessment) / 20
 - Follow-up by the teacher: About the work carried out by each student observed by the teacher (0-10)
 - Peers assessment: Within each group. Each student assesses his/her partners about the work they did (0-10). Then, an arithmetic average is calculated for each student.
 - Maximum score= 4 points

2- GLOBAL ASSESSMENT AND END-OF-PROGRAM EXAM

To pass the course requires a minimum score of 5 points.

- Theoretical exam:
 - Dates: Official calendar
 - \circ Individually
 - $\circ\;$ Contents: Given in the whole theoretical part of the course.
 - $\circ~$ Type: Series of short answer questions and/or test type ones
 - Maximum score= 6 points
- Practice exam and delivery of practice:
 - Dates of the exam: Official calendar
 - $\circ~$ Dates of the delivery of practice: Before the exam.
 - Individually.
 - $\circ~$ Type: Verification of the correct operation of the practice and of possible changes to be made in it.
 - Maximum score= 4 points

Sources of information

Basic Bibliography

George Coulouris, Jean Dollimore, Tim Kindberg, Gordon Blair, **Distributed systems. Concepts and design**, 5, Addison Wesley, 2011

Michael Wooldridge, An Introduction to Multiagent Systems, 2, Addison-Wesley, 2009

A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing (Natural Computing Series), 2, Springer, 2015 Tom White, Hadoop: The Definitive Guide, 3, O'Reilly Media, 2012

Complementary Bibliography

Thomas Rauber, Gudula Rúnger, Parallel Programming for Multicore and Cluster Systems, 2, Springer, 2013

Recommendations

Subjects that it is recommended to have taken before

Application Technologies/V05M145V01105