UniversidadeVigo

IDENTIFYING DATA

Mathematics: Mathematical basics for IT

Subject	Mathematics: Mathematical basics for IT		
Code	O06G151V01101		
Study programme	Grado en Ingeniería Informática	Choose	Year

The subject has a basic training character. It provides the mathematical basis for many of the disciplines of computer engineering, including data structure, algorithms, programming, database theory, automata theory, formal languages, compiler theory, computer security and operating systems.

English Friendly subject: International students may request from the teachers: a)
resources and bibliographic references in English, b) tutoring sessions in English, c) exams and assessments in English.

Training and Learning Results

Code

A1 Students will have shown they have sufficient knowledge and understanding of an area of study, starting after completion of general secondary education, and normally reaching a level of proficiency that, being mostly based on advanced textbooks, will also include familiarity with some cutting-edge developments within the relevant field of study.
A2 Students will be able to apply their knowledge and skills in their professional practice or vocation and they will show they have the required expertise through the construction and discussion of arguments and the resolution of problems within the relevant area of study.
B8 Knowledge of the essential subjects and technologies that will allow students to learn and develop new methods and technologies, as well as those that will endow them with versatility to adapt to new situations.
B9 Ability to solve problems by taking the initiative, making decisions and acting independently and creatively. Ability to communicate the knowledge contents, skills and abilities of the Computer Science Engineer profession.
C3 Ability to understand and master the essential concepts of discrete mathematics, mathematical logic, algorithmic mathematics and computational complexity, and their application to the resolution of engineering problems.
C4 Essential knowledge of use and programming of computers, operating systems, data bases and computer programs with application in engineering.
D4 Analysis, synthesis and evaluation capacity
D5 Organizational and planning skills
D6 Ability to abstract: ability to create and use models that reflect real situations
D9 Ability to quickly integrate and work efficiently in unidisciplinary teams and to collaborate in a multidisciplinary environment
D11 Critical thinking

Expected results from this subject				
Expected results from this subject	Training and Learning Results			
New	A1	B8	C3	D4
				D5
				D6
				D9
				D11
New	A2	B9	C3	D4
				D5
				D6
				D9
				D11
New	A1	B8	C3	D4
				D5
				D6
				D9
				D11
New	A2	B8	C3	D4
				D6
				D9
				D11
New	A1	B8	C3	D4
				D6
				D9
				D11
New	A2	B9	C3	D4
			C4	D5
				D6
				D9
				D11
New	A2	B9	C3	D4
			C4	D5
				D6
				D9
				D11
New	A2	B9	C3	D4
				D6
				D9
				D11
New	A2	B9	C3	D4
				D6
				D9
				D11
New	A1	B8	C3	D4
				D6
				D9
				D11
New	A1	B8	C3	D4
		B9	C4	D5
				D6
				D9
				D11
New		B9	C4	D9
				D11
New	A2	B9	C3	D4
				D5
				D6
				D9
				D11
New	A1	B8	C3	D5
				D11
New			C3	D4
				D11
New	A2	B9	C3	D6
				D11

New	B8	C3	D4	
			D5	
			D6	
				D9
		A2	B9	C3

Contents

Topic
1.- Introduction to the mathematical logic. Set
theory and applications. Theory of numbers.
2.- Induction and Recursion. Recount and

Combinatorics.
3.- Binary relations. Boolean Algebras
4.- Graphs. Trees.

Planning	Class hours	Hours outside the classroom	Total hours
Introductory activities	1	0.5	1.5
Lecturing	10	15	25
Problem solving	25.5	36	61.5
Autonomous problem solving	4	19	23
Mentored work	1.5	6	7.5
Laboratory practical	1.5	6	7.5
Essay questions exam	4	20	24
*The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.			

Methodologies	Description
Introductory activities	Activities aimed at making contact with and gathering information about students, as well as introducing the subject.
Lecturing	Presentation of the contents of the subject by the teacher, illustrated with numerous examples and applications.
Problem solving	Presentation, analysis, resolution and discussion of problems or exercises related to the subject taught.
Autonomous problem solving	Exercises and problems related to the subject taught will be proposed and the students will have to solve them (in groups) autonomously.
Collaborative learning will be used as an integrated methodology in the activity.	
Mentored work	Elaboration of a work (in group) on an application of Recursion Theory/Number Theory/Graph Theory in computer science.
Collaborative learning will be used as an integrated methodology in the activity.	

Personalized assistance

Methodologies	Description Lecturing Attention and resolution of doubts to students in relation to the different activities of the subject. Tutoring sessions may be carried out by telematic means (e-mail, videoconference, FAITIC forums, etc.) by prior arrangement.
Problem solving	Attention and resolution of doubts to students in relation to the different activities of the subject. Tutoring sessions may be carried out by telematic means (e-mail, videoconference, FAITIC forums, ...) by prior arrangement.
Autonomous problem	Attention and resolution of doubts to students in relation to the different activities of the subject. Tutoring sessions may be carried out by telematic means (e-mail, videoconference, FAITIC forums, ...) by prior arrangement.

Assessment

	Description	Qualification	Training and Learning Results			
Problem solving	Realisation (in group) and defence of a collection of basic problems of each block. It is evaluated among pairs.	20	A1	B8	C3	D6 D9 D11
	Results of learning: FROG1, FROG2, FROG3, FROG4, FROG5, FROG6, FROG8, FROG9, FROG10, FROG15, FROG17, FROG18.					D11
Mentored work	Realisation of one work (in group) about the applications of Recursion	10	A1	B8	C3 C4	$\begin{aligned} & \text { D4 } \\ & \text { D5 } \\ & \text { D6 } \\ & \text { D9 } \\ & \text { D11 } \end{aligned}$
	Theory, Number Theory or Graph Theory in the framework of computer science.					
	Results of learning: FROG1, FROG2, FROG3, FROG7, FROG11, FROG12, FROG13, FROG14, FROG15, FROG16, FROG17, FROG18.					
Laboratory practical	Realisation (in group) of a collection of problems employing Software of symbolic calculation.	10	A1	B8	C3	$\begin{aligned} & \text { D9 } \\ & \text { D11 } \end{aligned}$
	Results of learning: FROG1, FROG2, FROG3, FROG4, FROG5, FROG6, FROG8, FROG9, FROG10, FROG15, FROG17, FROG18.					
Essay questions exam	Realisation of a partial exam about the contents correspondents to the	60	$\begin{array}{r} \mathrm{A} 1 \\ \mathrm{~A} 2 \end{array}$	$\begin{aligned} & \text { B8 } \\ & \text { B9 } \end{aligned}$	C3	$\begin{aligned} & \text { D6 } \\ & \text { D11 } \end{aligned}$
	Results of learning: FROG1, FROG2, FROG3, FROG4, FROG5, FROG6, FROG8, FROG9, FROG10, FROG15, FROG18.					

Other comments on the Evaluation

CONTINUOUS EVALUATION SYSTEM

TEST 1: Theoretical evaluation.
Description: Objective test that will include evaluation of theoretical concepts and resolution of exercises.
Applied methodology(s): Examinationof development questions.
\% Rating: 30\%.
\% Minimum: 2.5 out of 10. In addition, the average of Test 1 with Test 2 must reach 4 out of 10 .
Competences evaluated: $A 1, B 8, C 3, D 6, D 9, D 11$.
Learning outcomes assessed: RA1, RA2, RA3, RA4, RA5, RA6, RA8, RA9,z RA10, RA15, RA18.

TEST 2: Theoretical evaluation.
Description: Objective test that will include evaluation of theoretical concepts and resolution of exercises.
Applied methodology(s): Examination of development questions.
\% Rating: 30\%.
\% Minimum: 2.5 out of 10. In addition, the average of Test 1 with Test 2 must reach 4 out of 10 .
Competences evaluated: $A 1, B 8, C 3, D 6, D 9, D 11$.
Learning outcomes assessed: $R A 1, R A 2, R A 3, R A 4, R A 5, R A 6, R A 8, R A 9, R A 10, R A 15, R A 18$.

TEST 3: Deliveries of exercises.
Description: Delivery and presentation of two group exercise bulletins.
Applied methodology(s): Problem solving.
\% Rating: 20\%
\% Minimum: 4 out of 10.
Competences evaluated: $A 1, B 8, C 3, D 6, D 9, D 11$.

TEST 4: Delivery of practices.
Description: Delivery
Applied methodology(s): Problem solving using the computer.
\% Rating: 10\%
\% Minimum: 0 out of 10 .
Competences evaluated: $A 1, B 8, C 3, D 6, D 9, D 11$.
Learning outcomes assessed: RA1, RA2, RA3, RA4, RA5, RA6, RA8, RA9, RA10, RA15, RA17, RA18.

TEST 5: Final work
Description: Exhibition of a group work.
Applied methodology(s): Supervised work
\% Rating: 10\%
\% Minimum: 0 out of 10 .
Competences evaluated: $A 1, B 8, C 3, C 4, D 4, D 5, D 6, D 9, D 11$.
Learning outcomes assessed: RA1, RA2, RA3, RA7, RA11, RA12, RA13, RA14, RA15, RA16, RA17, RA18.

If a student does not sit any of the tests, they will be assigned a grade of 0 in it.
Attendance to classes or exams is not mandatory, but the student should take into account that in some cases, minimum scores must be achieved in the exams to pass the subject.

By default all students will start the course in the continuous evaluation system.

GLOBAL ASSESSMENT SYSTEM

Procedure for the choice of the global evaluation modality: On the day of the exam set by the School, each student will be given to choose what he prefers, whether to take test 2 or the final exam. If a student chooses the test, he will be evaluated under the continuous evaluation system. If, on the other hand, you choose to take the final exam, you will be evaluated under the global evaluation system.

TEST 1: Theoretical evaluation.
Description: Objective test that will include evaluation of theoretical concepts and resolution of exercises.
Applied methodology(s): Examination of development questions.
\% Rating: 80\%.
\% Minimum: 4 out of 10 .
Competences evaluated: $A 1, B 8, C 3, D 6, D 9, D 11$.
Learning outcomes assessed: RA1, RA2, RA3, RA4, RA5, RA6, RA8, RA9, RA10, RA15, RA18.

TEST 2: Delivery of practices.
Description: Delivery
Applied methodology(s): Problem solving using the computer.
\% Rating: 10\%
\% Minimum: 0 out of 10.
Competences evaluated: $A 1, B 8, C 3, D 6, D 9, D 11$.
Learning outcomes assessed: RA1, RA2, RA3, RA4, RA5, RA6, RA8, RA9, RA10, RA15, RA17, RA18.

TEST 3: Final work
Description: Exhibition of a group work.
Applied methodology(s): Supervised work
\% Rating: 10\%
\% Minimum: 0 out of 10 .
Competences evaluated: $A 1, B 8, C 3, C 4, D 4, D 5, D 6, D 9, D 11$.
Learning outcomes assessed: RA1, RA2, RA3, RA7, RA11, RA12, RA13, RA14, RA15, RA16, RA17, RA18.
In case of not having taken tests 2 and 3 during the course, a period will be enabled to carry them out on the day of the final exam.

EVALUATION CRITERIA FOR EXTRAORDINARY CALL AND END OF CAREER

The global evaluation system set out above will be used.

QUALIFICATION PROCESS

In case of not exceeding the minimum score in any of the tests, the final grade in the subject can never exceed 4.

EVALUATION DATES

The dates of the tests corresponding to the continuous evaluation system will be published in the calendar of activities, available on the ESEI website https://esei.uvigo.es/docencia/horarios/

The official examination dates of the different calls, officially approved by the Xunta de Centro de la ESEI, are published on the ESEI website https://esei.uvigo.es/docencia/horarios/

USE OF MOBILE DEVICES

All students are reminded of the prohibition of the use of mobile devices in exercises and practices, in compliance with article 13.2.d) of the University Student Statute, regarding the duties of university students, which establishes the duty to "Refrain from the use or cooperation in fraudulent procedures in the evaluation tests, in the works carried out or in official documents of the university."

CONSULTATION/REQUEST FOR TUTORIALS

The tutorials can be consulted through the personal page of the teaching staff, accessible through
https://esei.uvigo.es/docencia/profesorado/

Sources of information

Basic Bibliography

Rosen, K., Matemática Discreta y sus Aplicaciones, 9788448140731,5, McGraw Hill., 2005
Kolman, B., Estructuras de Matemáticas Discretas para la Ciencia de la Computación, 9789688807996, Prentice Hall Hispanoamericana,
., Manual de Maxima,
Rosen, K, Discrete Mathematics and Its Applications, 125967651X, 8, McGraw-Hill, 2018
Complementary Bibliography
Caballero Roldán R. y otros, Matemática Discreta para Informáticos. Ejercicios resueltos, 849732210X, 1,
Pearson/Prentice Hall, 2007
Epp S. S., Discrete Mathematics with Applications, 0495391328, 4, International Thomson Publishing, 2010
García Merayo, F, Matemática discreta, 3, Thomson, 2015
García Merayo, F.; Hernández Peñalver, G.; Nevot Luna, A., Problemas resueltos de Matemática discreta,
9788497322102, 2, Thomson,
Garcia, C.; López, J. M.; Puigjaner, D.,, Matemática Discreta. Problemas y ejercicios resueltos, 9788420534398, 1, Prentice Hall, 2002

Recommendations

Subjects that continue the syllabus
Mathematics: Linear algebra/O06G151V01106
Subjects that are recommended to be taken simultaneously
Mathematics: Mathematical analysis/O06G151V01102

