UniversidadeVigo

IDENTIFYING DATA
Computer science: Computing for engineering

Subject	Computer science: Computing for engineering	
Code	V12G360V01203	
Study programme	Grado en Ingeniería en Tecnologías Industriales	
Descriptors	ECTS Credits Choose \quad Year	Quadmester
	6 Basic education 1st	2nd
Teaching language	Spanish Galician English	
Department		
Coordinator	Rodríguez Damian, María Sáez López, Juan	
Lecturers	Castro Rascado, Enrique Diéguez González, Luis Díez Sánchez, Ana Isabel Fernández Fernández, María Sila Ibáñez Paz, Regina López Fernández, Joaquín Pérez Cota, Manuel Rodríguez Damian, Amparo Rodríguez Damian, María Rodríguez Diéguez, Amador Sáez López, Juan	
E-mail	mrdamian@uvigo.es juansaez@uvigo.es	
Web	http://moovi.uvigo.gal/	
General description	They treat the following contents: Methods and basic algorithms of programming Programming of computers by means of a language of high level Architecture of computers Operating systems basic Concepts of databases	

Training and Learning Results

Code

B3 CG3 Knowledge in basic and technological subjects that will enable them to learn new methods and theories, and equip
them with versatility to adapt to new situations
B4 CG4 Ability to solve problems with initiative, decision making, creativity, critical thinking and to communicate and transmit knowledge, skills and abilities in the field of Industrial Engineering.
C3 CE3 Basic knowledge on the use and programming of computers, operating systems, databases and software applications in engineering.
D1 CT1 Analysis and synthesis.
D2 CT2 Problems resolution.
D5 CT5 Information Management.
D6 CT6 Application of computer science in the field of study.
D7 CT7 Ability to organize and plan.
D17 CT17 Working as a team.

Expected results from this subject	
Expected results from this subject	Training and Learning Results

$\left.\begin{array}{llll}\text { Computer and operating system skills. } & \text { B3 } & \text { C3 } & \text { D5 } \\ & & \text { D6 } \\ \text { D7 }\end{array}\right]$

Contents

Topic

Concepts and basic technicians of programming Paradigms of programming

applied to the engineering	Programming structured
	Programming languages

Py	Python features
	Types of variables data and operators Comments
	Functions and standard Modules. Import and use of modules. Input-Output and control of errors
Structures of control	Decision if-else
	Iterative: while
	Boolean algebra
Sequences and iterative	Working with sequences: lists, tuples and string
	Types of data mutable and no mutable
	Concepts of reference and value
Indexes of the sequences	
Cycle for- in	
Operators and sequences	
Functions and methods of sequences	

Lists and List of lists	Operators and methods Characteristics of the lists Working with lists Indexes and iterate lists
Functions and own Modules	Definition and creation of functions Types of parameters and return values Concepts of value and reference in the parameters Scope of the variables Creation and invocation of modules
Persistence	Files, definitions and characteristics Basic operations with the files
Graphic interface	Creation of windows and widgets Manipulation of graphic elements Utilisation of variable control
Basic concepts of Computing	Computer Architecture Components: hardware, software Operating systems Databases

Planning	Class hours	Hours outside the classroom	Total hours
Introductory activities	1	1	2
Practices through ICT	22	24	46
Problem solving	11	18	29

Previous studies	1	5	6
Autonomous problem solving	6	20	26
Lecturing	10	0	10
Objective questions exam	4	7	11
Problem and/or exercise solving	8	12	20
*The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.			

Methodologies	Description
Introductory activities	Activities directed to take contact, gather information on the students, creation of groups, tasks of organisation, as well as present the subject.
Practices through ICT	Activities of application of the knowledges to concrete situations and of acquisition of basic skills and process related with the matter object of study. They develop in special spaces with equipment facilitated by the School, and expects that each student have his own laptop or the facilitated by the School.
Problem solving	Analysis of a fact, problem or real event with the purpose to know it, interpret it, resolve it, generate hypothesis, contrast data, complete knowledges, diagnose it and train in alternative procedures of solution.
Reading and understanding by part of the student of some subjects or parts of subjects to deepen in the knowledge of the same in class.	
Resolution by part of the student of the different type of problems posed, being able to identify the efficiency of each method of resolution proposed.	
Exhibition by part of the professor of the contents on the matter object of study, theoretical bases and/or guidelines of a work, exercise or project to develop by the student.	
Lecturing	
Personalized assistance	Description
Prothodologies	They will resolve the doubts posed by the students. Teachers' tutoring in the agreed format.
Practices through ICT	Attention in the laboratory to the doubts that present or will indicate him the way to be followed so that the person find the solution. Teachers' tutoring in the schedule and format stipulated.

Assessment	Description			
	Qualification	Training and Learning Results		
Practices through ICT	Group of proofs that include the solution of problems, exercises of practical type, and activities to resolve.	70		
Objective questions exam	Proofs for the evaluation of the competitions purchased that include questions with different alternative of answer (true/false, multiple election, ...)	15	B3	C3 D5
Problem and/or exercise Resolution of practical exercises 15 solving				

Other comments on the Evaluation

Ethical commitment:
Students are expected to behave ethically. If unethical behaviour is detected (copying, plagiarism, use of unauthorized electronic devices and others), then it will be considered that the student does not meet the minimum requirements to pass thecourse. In this case, the final grade for the current academic year will befailed (0.0).

In addition to the ethical commitment, the following is underlined:
In the first place, a person registered in the course is by default subject to the continuous assessment system; if the student does not want to be in this system, the he/she must expressly renounce to it within the established deadlines.

CONTINUOUS ASSESSMENT OPERATION

In the present course, the continuous assessment will collect all the evidence oflearning from the person enrolled and will be grouped into three assessments. The first two will take place preferably in the laboratories: Test 1 and Test2. The third evaluation may be written: Test 3. If the student does notrenounce to the continuous evaluation system, tests that are not attended will be considered as qualified as zero (0.0). A minimum score of 30% out of 10 (3.0 points) must be obtained in the
last two evaluations: Test 2 and Test 3, inorder to be eligible to have the final average calculated. If this requirementis not met and the final average is equal to or greater than 5 , the final grade will be 4 :

Test $1 * 0.3+($ Test $2>=3) * 0.4+($ Test $3>=3) * 0.3>=5$
A student is considered passed if he/she obtains a five or more in compliance with all the requirements.

First call (May/June):

The following must be met to pass the subject under continuous assessment:
Test $1 * 0.3+($ Test $2>=3) * 0.4+($ Test $3>=3) * 0.3>=5$
Once thefirst evaluation: Test 1, has been carried out, the person enrolled may requestto abandon the continuous evaluation system (within the period and by the meansestablished by the teaching staff). In this way, the person enrolled will beable to follow the non-continuous assessment system.

Second call (June/July):

If a person does not reach the passing level in the first exam (May/June) but has passed the minimum mark in the second exam: Test 2, in the second call (June/July) he/she can choose to keep the grades of the first two tests, and take a 4-points exam, or take a 100% exam in the subject (10 points). If the person takes the 3 -points test, he/she will be asked for a minimum score of 30% out of 10 (3.0 points) in order to calculate the final grade. If this requirement is not met and the final average is equal to or greater than 5 , the final grade will be 4.

NON-CONTINUOUS EVALUATION OPERATION

An exam that allows students to obtain 100% of the grade. The exam may be divided into sections, minimuns can be required.

First call (May/June):

Registered students who have expressly renounced to the continuous assessment system may take the May/June exam (on the date and at the time proposed by the School) and take an exam that allows them to obtain 100% of the grade. This exam is not open to those who have failed the continuous assessment.

Second call (June/July):

An exam will be proposed to evaluate 100% of the subject, for those who have not achieved the minimum mark in the first call.

The version of the guide was made in Spanish. For any doubt or contradiction, the Spanish guide will be mandatory.

[^0]
[^0]: Sources of information
 Basic Bibliography
 Eric Matthes, Python Crash Course, 3rd Edition: A Hands-On, Project-Based Introduction to Programming, 3, No Starch Press, 2022
 Silvia Guardati Buemo y Osvaldo Cairó Battistutti, De cero al infinito. Aprende a programar en Python, Cairó, 2020 Juan Diego Pérez Villa, Introducción a la informática. Guía visual, Anaya Multimedia, 2022
 Complementary Bibliography
 Jane Holcombe y Charles Holcombe, ISE Survey of Operating Systems, 7, McGraw Hill, 2022
 Antonio Postigo Palacios, Bases de datos, Ediciones Paraninfo, 2021

