Universida_{de}Vigo

Subject Guide 2022 / 2024

				Sub	ject Guide 2023 / 2024
IDENTIFYI	NG DATA				
Physics: P	nysics II				
Subject	Physics: Physics II				
Code	V09G311V01107				
Study	Grado en				
programme	Ingeniería de los				
	Recursos Mineros y				
Doccriptors	ECTS Crodits		Choose	Voar	Ouadmostor
Descriptors	é		Basic oducation		Quadimester
Teaching	U #EnglishEriendly			150	2110
language	Spanish				
language	Galician				
Department					
Coordinator	Vázguez Dorrío, José Benito				
Lecturers	Vázquez Dorrío, José Benito				
	Vijande López, Javier				
E-mail	bvazquez@uvigo.es				
Web	http://www.clickonphysics.es/				
General	Physics 2 is a fundamental subject that co	onsists of 6	ECTs and that has a	clear bridging f	unction that adapts
description	the knowledge in Physics with which stude	ents theore	tically enter the Scho	ol of Mining an	d Energy Engineering.
	Likewise, the contents of the subject, bala	anced in ter	ms of theoretical and	l practical aspe	cts, serve as a focus
	and reference for a large part of the scien	tific-techno	logical subjects of th	e Degree. Som	e of the credits of the
	subject address more specific content req	uired to pro	world facilitating the	knowledge the	at allows an
	necessary theoretical practical skills and a	abilitios rola	ted to professional r	erformances w	with a global approach
	within the field of engineering and with a	specific foci	us for graduates of th	ne School of Mi	ning and Energy
	Engineering. This subject has as a specific	competen	ce the understanding	and mastery of	of the basic concepts of
	the general laws of Optics and Electromag	gnetism and	I their application to	solve engineer	ing problems.
		-		-	
	English Friendly subject: International stud	dents may r	equest from the tea	chers: a) mater	ials and bibliographic
	references in English, b) tutoring sessions	in English,	c) exams and assess	ments in Englis	sh.
Training a	nd Learning Results				
Code					
A1 That th	e students demonstrate to possess and uno	derstand kn	owledge in an area o	of study that is	part of the general
educat	ion (second level), and often found at a leve	el that, alth	ough based on adva	nced textbooks	, also includes some
aspect	s that involve knowledge from the avant-ga	rde of the f	ield of study		
A2 That th	e students know how to apply their knowle	dge to their	work or vocation in	a professional	way and that they
posses	s the competences that are usually demons	strated thro	ugh the elaboration a	and defense of	arguments and the
resolut	ion of problems within their area of study				<u> </u>
A3 That th	e students have the capability to gather an	id interpret	relevant data (usual	y within their a	rea of study) to issue
Juagme	ents that include a reflection on relevant so	cial, scienti	ic or ethical issues		
A4 Inat tr	le students can transmit information, ideas,	problems a	and solutions to a spe	ecialized and no	on-specialized
	Le la studente develor these learning carabilit	ios posossa	ny to undortako furt	or ctudioc with	a high dograp of
	my	les necessa	ing to undertake fulli	iel studies with	ra nigh degree of
	tanding and mastery of the essential conce	onts of the a	eneral laws of mech	anics thermody	vnamics fields and
Waves	and electromagnetism and their application	n for solving	a specific problems in	n the field of er	aineerina.
D1 Ability	to draw links between the different element	ts of all the	knowledge they aco	uired, understa	inding them as
compo	nents of a body of knowledge with a clear s	tructure and	d strong internal coh	esion.	
D3 To sua	gest and develop practical solutions, using t	the relevant	t theoretical knowled	lge, to phenom	ena and problems-
situatio	ons of ordinary reality that are specific to er	ngineering,	developing appropria	te strategies.	
D4 To fact	or collaborative working communication of	raphization	and planning skills	along with the	ability to take

To foster collaborative working, communication, organization and planning skills, along with the ability to take responsibilities in a multilingual, multidisciplinary work environment that promotes education for equality, peace and D4 respect for fundamental rights.

- D5 To be familiar with the relevant sources of information, including constant updating, in order to practice one s profession competently, accessing all the present and future tools of information search, constantly adapting to technological and social changes.
- D10 To become aware of the need for continuous training and the constant improvement of quality, developing the values that are characteristic of scientific thinking, showing flexible, open and ethical attitudes in the face of different situations and opinions, particularly as regards non-discrimination on the grounds of gender, race or religion, respect for fundamental rights, accessibility, etc.

Expected results from this subject				
Expected results from this subject		Training and Learning		
		Results		
Understand the basics of Electromagnetism.	A1	C4	D1	
	A2		D3	
	A3		D4	
	A4		D5	
	A5		D10	
Know the fundamentals of the experimental process used when working with Electromagnetism		C4	D1	
	A2		D3	
	A3		D4	
	A4		D5	
	A5		D10	
Develop practical solutions to phenomena and problem-situations of everyday reality in general	A1	C4	D1	
and Electromagnetism in particular.			D3	
	A3		D4	
	A4		D5	
	A5		D10	
Understand that scientific knowledge arises from a process of elaboration in interaction with	A1	C4	D1	
technology and linked to the characteristics and needs of society at each historical moment.	A2		D3	
	A3		D4	
	A4		D5	
	A5		D10	
Know how to evaluate information from different sources in order to form one's own opinion and	to A1	C4	D1	
be able to express oneself critically on current scientific and technological problems related to electromagnetism.			D3	
			D4	
	A4		D5	
	<u>A5</u>		D10	

Contents			
Торіс			
NATURE AND PROPAGATION OF THE LIGHT	Nature of the light. Fermat's principle. Reflection and refraction of the light. Total reflection: Angle limit.		
OPTICAL SYSTEMS	Dioptria: spherical and flat. Lateral magnification		
OPTICAL INSTRUMENTS: LENS	Spherical lenses. Thin lenses. Ray tracing. The eye as an optical instrument.		
ELECTROSTATICS. THE ELECTRICAL FIELD IN VACUUM	Electric charge. Conductors and insulators. Coulomb's law. Electric field. Gauss's law. Electric field in a conductor. Capacitors. The electric dipole: Actions of the electric field on a dipole.		
ELECTROSTATICS. THE ELECTRICAL FIELD IN DIELECTRICS	The vector polarisation. Polarisation charges.		
ELECTROSTATIC ENERGY	Introduction. Potential energy of a group of point charges. Energy of a charged capacitor.		
DIRECT CURRENT	Electric current. Current intensity. Current density. Ohm's Law. Joule's Law. Electric generator. Electromotive force. Direct current circuits. Kirchhoff's Law.		
MAGNETOSTATICS. THE MAGNETIC FIELD IN THE	Magnetic force on a moving charge. Magnetic induction. Actions of the		
VACUUM	magnetic field on a linear conductor through which an electric current is flowing. Biot and Savart's Law. Ampère's Law of Circulation. Magnetic flux.		
MAGNETOSTATICS. THE MAGNETIC FIELD IN	Magnetisation of matter. The magnetic field strength vector. Magnetic		
MATERIAL MEDIA	susceptibility and permeability. Ferromagnetism.		
TIME-DEPENDENT ELECTROMAGNETIC FIELDS	Faraday's law of induction and Lenz's law. Mutual induction. Self-induction.		
ALTERNATING CURRENT	RMS value of a periodic function. RLC series circuit. Reactance. Impedance. Resonance. Power in alternating current circuits. Alternating current circuits. Complex formulation.		
ELECTROMAGNETIC WAVES	Ampere's Generalized Law. Maxwell's equations. Electromagnetic spectrum.		

Planning			
	Class hours	Hours outside the classroom	Total hours
Lecturing	25	32.5	57.5
Problem solving	10	15	25
Laboratory practical	10	10	20
Seminars	2.5	2.5	5
Seminars	2.5	17.5	20
Problem and/or exercise solving	1	8	9
Problem and/or exercise solving	1	8	9
Report of practices, practicum and externa	l practices 0.5	4	4.5
*The information in the planning table is fo	r guidance only and does no	ot take into account the het	erogeneity of the students.

Methodologies	
	Description
Lecturing	Presentation of the subject contents by the lecturer. Performing teaching experiments. Flipped classroom
Problem solving	Approach, analysis, resolution and debate of a problem or exercise related with the topics of the subject
Laboratory practical	Practical application of the theory of a field of knowledge in a specific context. Practical exercises through the various laboratories.
Seminars	Time reserved by each lecturer to address and resolve the doubts of the students with the function of guiding and guiding the learning process
Seminars	In-depth work on a topic. Expansion and relation of the contents given in the magisterial sessions. Project Based Learning

Personalized assistance				
Methodologies	Description			
Seminars	Time reserved by each teacher to address and resolve the doubts of the students. The attention can be individual or in small groups, according to the nature of the attention and normally takes place in the teacher's office or in the classroom if necessary. In these activities, the teacher's role is to guide and guide the learning process of the students and help them to successfully carry out the corresponding autonomous work. The teachers indicate the place, day and time for this personalized attention in the first days of class and can be consulted in the PROFESORADO section of the center's website: http://minaseenerxia.uvigo.es/es/ . For all teaching modalities, tutoring sessions may be carried out by telematic means (email, videoconference, Moovi forums,) after prior consultation.			
Seminars	In specific seminar sessions, the teaching staff monitors the work of each group, providing the necessary material for its completion when the students cannot get it. The resolution of doubts is carried out in these seminar sessions and in the group tutoring hours. For all teaching modalities, tutoring sessions may be carried out online (email, videoconference, Moovi forums,) after prior consultation			
Laboratory practical	Laboratory practices are carried out in groups under the supervision of the teaching staff. The resolution of doubts is carried out during each laboratory practice session and, later, if the students require it, during the tutoring hours individually or in groups. For all teaching modalities, tutoring sessions may be carried out online (email, videoconference, Moovi forums,) after prior consultation.			
Problem solving	The resolution of doubts is carried out during the seminar sessions and during the tutoring hours individually. For all teaching modalities, tutoring sessions may be carried out online (email, videoconference, Moovi forums,) after prior consultation.			
Lecturing	The resolution of doubts is carried out during the tutoring hours individually or in groups. For all teaching modalities, tutoring sessions may be carried out online (email, videoconference, Moovi forums,) after prior consultation.			
Tests	Description			
Report of practices, practicum and external practices	The reports of laboratory practices are carried out individually or in groups following the instructions of the teaching staff. The resolution of doubts is carried out during the hours of the laboratory practices or during the hours of tutorials. For all teaching modalities, tutoring sessions may be carried out online (email, videoconference, Moovi forums,) after prior consultation.			
Problem and/or exercise solving	The resolution of doubts is carried out during the seminar sessions and during the tutoring hours individually. For all teaching modalities, tutoring sessions may be carried out online (email, videoconference, Moovi forums,) after prior consultation.			

The resolution of doubts is carried out during the tutoring hours individually or in groups. For all teaching modalities, tutoring sessions may be carried out online (email, videoconference, Moovi forums, ...) after prior consultation.

Assessment				
	Description	Qualification	n Training and Learning Results	
Lecturing	Written exam of 12 short answer questions. EXPECTED RESULTS FROM THIS SUBJECT: Understand the basics of Electromagnetism. Develop practical solutions to phenomena and problem- situations of everyday reality in general and Electromagnetism in particular. Know how to evaluate information from different sources in order to form one's own opinion and to be able to express oneself critically on current scientific and technological problems related to electromagnetism.	35	A1 C4 D1 A2 D3 A3 D4 A4 D5 A5 D10	
Problem solving	Written exam of 3 exercises. EXPECTED RESULTS FROM THIS SUBJECT: Understand the basics of Electromagnetism. Develop practical solutions to phenomena and problem-situations of everyday reality in general and Electromagnetism in particular. Know how to evaluate information from different sources in order to form one's own opinion and to be able to express oneself critically on current scientific and technological problems related to electromagnetism. Understand that scientific knowledge arises from a process of elaboration in interaction with technology and linked to the characteristics and needs of society at each historical moment.	35	A1 C4 D1 A2 D3 A3 D4 A4 D5 A5 D10	
Laboratory practical	Laboratory report. EXPECTED RESULTS FROM THIS SUBJECT: Understand the basics of Electromagnetism. Develop practical solutions to phenomena and problem-situations of everyday reality in general and Electromagnetism in particular. Know how to evaluate information from different sources in order to form one's own opinion and to be able to express oneself critically on current scientific and technological problems related to electromagnetism. Understand that scientific knowledge arises from a process of elaboration in interaction with technology and linked to the characteristics and needs of society at each historical moment.	15	A1 C4 D1 A2 D3 A3 D4 A4 D5 A5 D10	
Seminars	Work report. EXPECTED RESULTS FROM THIS SUBJECT:Develop practical solutions to phenomena and problem-situations of everyday reality in general and Electromagnetism in particular. Know how to evaluate information from different sources in order to form one's own opinion and to be able to express oneself critically on current scientific and technological problems related to electromagnetism. Understand that scientific knowledge arises from a process of elaboration in interaction with technology and linked to the characteristics and needs of society at each historical moment.	15	A1 C4 D1 A2 D3 A3 D4 A4 D5 A5 D10	

Other comments on the Evaluation

1.- Two Continuous Assessment (CA) opportunities are proposed:

a) First CA opportunity (at the end of the term). In order to facilitate a continuous evaluation during the term, two voluntary partial exams will be carried out (with contents of the Theory (T) master sessions and those of resolution of exercises/Problems (P)), which, if approved, will release the corresponding contents out of the final written exam of the First opportunity. To pass these voluntary partial exams it is necessary to obtain a minimum grade of 3.50 in the written exams (T and P) and an average (0.5*(T+P)) equal to or greater than 5. Each voluntary partial exam represents a 70 /3% of the subject grade. Other weekly Voluntary Theory Tests (PVT) or monthly Voluntary Problems Tests (PVP) only increase the final grade if a minimum average grade of 3.50 is reached in the written exams (T and P). Attendance to Group B (SB) and Group C (SC) sessions is compulsory, so the grade obtained in the Seminar Work Report/Physics Project (PF) and in the Laboratory Report will be weighted by taking into account the assistance to laboratory practices (L). The grade can be increased if Voluntary Laboratory Tests are undertaken (PVL).

b) Second opportunity CA (July). The values obtained previously in the following assessables are maintained: PVT, PVP, PVL, SB, SC, PF and L. The written exam now consists of 3 exercises and 9 short-answer questions and assumes as a whole, as in the First opportunity EC , 70% of the final mark.

In both EC opportunities the Final Note is obtained by the following formula:

Final Score = Score A + Score B + Score C

Score A = [(T + PVT) + (P + PVP)] * 0.35

Note B = (L + PVL) * SB * 0.15

Note C = (PF + PVL) * SC * 0.15

T1, T2, T3: Theory grade for blocks 1 (Optics), 2 (Electric Field) and 3 (Magnetic Field), respectively

P1, P2, P3: note of Problems of blocks 1 (Optics), 2 (Electric Field) and 3 (Magnetic Field), respectively

T: average of the theory grades

P: mean of the problem scores

T + PVT: the PVT note is added if both P and T are equal to or exceed 3.50 points

P + PVP: the PVP note is added if both P and T are equal to or exceed 3.50 points

L: average mark of the 5 laboratory practices

SB: attendance at sessions B (SB = number of sessions attended/5)

L + PVL: the PVL note is added if L is equal to or exceeds 3.50 points

PF: Physics Project note

SC: attendance at C sessions (SC = number of sessions attended/3)

PF + PVL: the note of the PVL is added if PF equals or exceeds 3.50 points

The students have a simulator for calculating qualifications in MooVi platform.

2.- Global Assessment (GA):

Those students who cannot comply with the continuous assessment (CA) method described above may apply for a single global assessment, understood as that which is carried out in a single academic act, which may include as many tests as are necessary to accredit that the student has acquired all the competences described in the this Teaching Guide.

Exam schedule. Verify/consult updates on the center's website: http://minaseenerxia.uvigo.es/gl/docencia/exames

Sources of information

Basic Bibliography Sears, F.W.; Zemansky, M.W.; Young, H.D.; Freeman, R.A., Física Universitaria, 12, Pearson Educación, 2009

Tipler P.A., Física para las ciencias y la tecnología, 6, Reverté, 2010

Complementary Bibliography

Burbano de Ercilla, S.; Burbano García, E.; García Muñoz, C., **Problemas de Física**, 27, Mira Editores, 2006 Bauer, W.; Westfall, G., **Física para Ingeniería y Ciencias**, 2, McGraw-Hill, 2014 De Juana Sardón, J.M., **Física General**, 2, Pearson Prentice Hall, 2007

Recommendations

Subjects that continue the syllabus

Circuits and electrical machines/V09G311V01201 Electrical Technology/V09G311V01209

Subjects that are recommended to be taken simultaneously

Mathematics: Calculus II/V09G311V01109

Subjects that it is recommended to have taken before

Physics: Physics I/V09G311V01102 Mathematics: Linear algebra/V09G311V01103 Mathematics: Calculus I/V09G311V01104

Other comments

The following previous knowledge is recommended: Basic knowledge of trigonometric, complex and vector algebra, as well as differential and integral calculus of functions of real variables.

Physics Projects webpage is recommended to be consulted to follow up on our Physics 2 gamified subject, to be used as a selfregulated

learning tool or in Project-Based Learning activities: http://www.clickonphysics.es/cms/

Videos of the YouTube channel are recommended to be followed in our Physics 2 gamified subject, to be used as a

selfregulated

learning tool or in Flipped Classroom activities: https://www.youtube.com/@josebenitovazquezdorrio3566 The own audios of the Spotify channel are recommended to be listened to to follow our Physics 2 gamified subject, to be used as a self-regulated learning tool or in Flipped Classroom activities: https://podcasters.spotify.com/pod/show/josebenitovazquezdorrio