Universida_{de}Vigo

Subject Guide 2023 / 2024

	NG DATA			
Systems a				
Subject	Systems and			
	Control			
	Engineering			
Code	V09G291V01301			
Study	Grado en			
programme	Enorgía			
Descriptors		Chasse	Veer	Quadraastar
Descriptors		Choose		Quadmester
Teeshine	0 Creatish	Manualory	310	151
language	Spanish			
Doportmon				
Coordinator	Doroiro Mortínoz, Moicós Nicolós			
Locturors	Pereira Martínez, Moisés Nicolás			
<u>Lecturers</u>				
E-mail	http://www.inipa.gol			
Veb	nttp://moovi.uvigo.gai	nation evetome and	l control mothodo or	o procepted
General	In this matter, the basic concepts of industrial autor	nation systems and	control methods an	e presented,
description	considering the programmable automaton and the i	ndustrial regulator,	respectively, as the	
Training a	nd Learning Results			
Code				
A1 That th	ne students demonstrate to possess and understand k	nowledge in an area	a of study that is par	rt of the general
educat	cion (second level), and often found at a level that, alth	nough based on adv	anced textbooks, al	so includes some
aspect	s that involve knowledge from the avant-garde of the	neid of study	(! ! !	
A2 That th	he students know how to apply their knowledge to the	r work or vocation	in a professional way	y and that they
posses	is the competences that are usually demonstrated the	bugh the elaboratio	n and defense of arg	juments and the
A2 That th	not of problems within their area of study	rolovant data (ucu	ally within their area	of study) to issue
iudam	ents that include a reflection on relevant social scient	ific or othical issues	any within their area	a of study to issue
A4 That th	a students can transmit information ideas problems	and solutions to a s	necialized and non-	specialized
audien				specialized
A5 That th	ne students develon those learning canabilities necess	arv to undertake fu	rther studies with a	high degree of
autono	in students develop those learning capabilities necess	ary to undertake ru	Turci Studies with a	night degree of
B1 Ability	to draw links between the different elements of all the	knowledge acquire	ed understanding th	em as components
of a bo	dy of knowledge with a clear structure and strong inte	ernal cohesion.	ea, anderstanding tr	iem us components
B3 To sug	gest and develop practical solutions, using the relevan	nt theoretical knowl	edge, to phenomena	a and problems-
situati	ons of ordinary reality that are specific to engineering.	developing approp	riate strategies.	
B4 To fost	er collaborative working, communication, organization	and planning skills	s, along with the abi	lity to take
respor	sibilities in a multilingual, multidisciplinary work envir	onment that promo	tes education for eq	uality, peace and
respec	t for fundamental rights.	·	·	2.1
B5 To be	familiar with the relevant sources of information, inclu	ding constant upda	ting, in order to prac	tice one∏s
profes	sion competently, accessing all the present and future	tools of informatio	n search, constantly	adapting to
techno	logical and social changes.		-	
C16 Knowle	edge of the fundamentals of the electrical power syste	m: generation of er	nergy, transportatior	n, distribution and
delive	y networks, along with the types of lines and conduct	ors. Knowledge of t	he regulations of hig	h and low tension.
Basic l	nowledge of electronics and control systems.			
C38 Knowle	edge about modelling and simulation of systems.			
D1 To be	familiar with and to be able to use the legislation appli	cable in this sector	, to be acquainted w	ith the social and
busine	ss environments and to be able to deal with the releva	ant administration,	integrating this know	vledge into the
drawin	g up of engineering projects and into the implemental	ion of every aspect	of their professiona	l work.
D2 Ability	to organize, understand, assimilate, produce and han	dle all the relevant	information to devel	op their
profes	sional work, using appropriate computing, mathematic	s, physics tools, et	c. when these are re	quired.
D3 Unders	standing engineering within a framework of sustainabl	e development with	n environmental awa	ireness.

- D4 Understanding the importance of safety issues and being able to foster awareness about safety among people within their environment.
- D5 To become aware of the need for continuous training and the constant improvement of quality, developing the values that are characteristic of scientific thinking, showing flexible, open and ethical attitudes in the face of different situations and opinions, particularly as regards non-discrimination on the grounds of gender, race or religion, respect for fundamental rights, accessibility, etc.

Expected results from this subject					
Expected results from this subject		Training and Learning			
			Results		
General knowledge about control and simulation of dynamic systems, both continuous and			C16		
sampled.			C38		
Capacity to design basic systems of regulation and control.			C16	D1	
			C38	D2	
				D3	
				D4	
				D5	
Basic notions of optimum control.			C16		
			_C38		
Skill to conceivimg, developing and modeling automatic systems.	A1		C16	D1	
	A2		C38	D2	
	A3			D3	
	A4			D4	
	A5				
Capacity to analyse the needs of a project of automation and fix its specifications.			C16	DI	
			C38	D2	
				D3	
				D4 DE	
Ability to give and called an inductrial programmable controller for a charife outemation			<u></u>	<u></u>	
Ability to size and select an industrial programmable controller for a specific automation			C10		
application as well as determine the type and characteristics of the required sensors and			C20	D2 D2	
				D3	
				D4 D5	
Being able to integrate different technologies (electronic electrical pneumatic etc.) in a single			<u>C16</u>	 1	
automation		B3	C38	D1 D2	
		R4	000	D3	
		B5		D4	
				D5	

Contents	
Торіс	
1. Introduction to industrial automation.	1.1 Introduction to tasks automation.
	1.2 Types of control.
	1.3 The programmable logic controller.
	1.4 Blocks diagram. Elements of the programmable logic controller.
	1.5 Cycle of operation of the PLC. Cycle time.
	1.6 Ways of operation.
2. Introduction to PLC programming.	2.1 Binary, Octal, Hexadecimal and BCD systems. Real numbers.
	2.2 Addresing and access to periphery.
	2.3 Instructions, variables and operands.
	2.4 Forms of representation of one plan.
	2.5 Types of modules of program.
	2.6 Linear and structured programming.
3. PLC Programming with Inputs/Outputs.	3.1 Binary variables. Inputs, outputs and memory.
	3.2 Binary combinations.
	3.3 Operations of assignment.
	3.4 Creation of simple program.
	3.5 Timers and counters.
	3.6 Arithmetic operations.
	3.7 Examples.

 4.1 Basic principles. Modelling techniques. 4.2 Petri nets modelling. 4.2.1 Definition of places and transitions. Rules of evolution. 4.2.2 Conditional election between varied alternatives. 4.2.3 Simultaneous sequences. Concurrency. Resource shared. 4.3 Petri nets implantation. 4.3.1 Direct implantation. 4.3.2 Normalized implantation (Grafcet). 4.4 Examples.
 5.1 Control systems in open and closed loop. 5.2 Typical loop of control. Nomenclature and definitions. 5.3 Physical systems and mathematical models. 5.3.1 Mechanical systems. 5.3.2 Electric systems. 5.3.3 Others. 5.4 State space modelling. 5.5 Transfer function modelling. Laplace transform. Properties. Examples.
 6.1 Stability. 6.2 Transient response. 6.2.1 First order systems. Differential equation and transfer functions. Examples 6.2.2 Second order systems. Differential equation and transfer functions. Examples 6.2.3 Effect of the addition of poles and zeros. 6.3 Reduction of systems of upper order. 6.4 Permanent response. 6.4.1 Errors. 6.4.2 Input signals and type of a system. 6.4.3 Error constants.
 7.1 Basic control actions. Proportional, integral and derivative effects,. 7.2 PID controller. 7.3 Tuning empirical methods. 7.3.1 Open loop tuning: Ziegler-Nichols and others. 7.3.2 Closed loop tuning: Ziegler-Nichols and others. 7.4 State space design. Poles assignment.
Introduction the program STEP7, that allows to create and modify programs for Siemens PLCs S7-300 and S7-400.
Simple automation problem modelling and implantation in STEP7 using binary operations.
RdP modelling of complex automation example and STEP7 implantation.
RdP normalized modelling and automatitation with S7-Graph.
Introduction to the specific instructions of systems of control of MATLAB program.
Introduction to the program SIMULINK, extension of MATLAB for dynamic systems simulation.
Modelling and simulation of control systems with SIMULINK.
Determination of the parameters of a PID industrial controller poles methods studied and implantation of the control calculated in an industrial controller.

Planning					
	Class hours	Hours outside the classroom	Total hours		
Laboratory practical	16	30	46		
Problem solving	4	10	14		
Lecturing	30	25	55		
Report of practices, practicum and ext	ernal practices 0	8	8		
Essay questions exam	2.5	24.5	27		
*The information in the planning table	is for guidance only and does not	ot take into account the het	erogeneity of the students.		

Methodologies	
	Description
Laboratory practical	Activities of application of the knowledge acquired in the theory classes to specific situations that can be developed in the laboratory of the subject
Problem solving	The teacher will solve problems and exercises in the classroom and the students will have to solve similar exercises to acquire the necessary skills

Personalized assistance			
Methodologies	Description		
Lecturing	For an effective use of the students dedicatio, the teaching staff will personally attend to the doubts and queries of the student. This attention will take place both in the theory, problems and laboratory classes as well as in the tutorials (at a predetermined time). For all teaching modalities, tutoring sessions may be carried out by telematic means (email, videoconference, FAITIC forums,) under the prior agreement modality.		
Laboratory practical	For an effective use of the students dedicatio, the teaching staff will personally attend to the doubts and queries of the student. This attention will take place both in the theory, problems and laboratory classes as well as in the tutorials (at a predetermined time). For all teaching modalities, tutoring sessions may be carried out by telematic means (email, videoconference, FAITIC forums,) under the prior agreement modality.		
Problem solving	For an effective use of the students dedicatio, the teaching staff will personally attend to the doubts and queries of the student. This attention will take place both in the theory, problems and laboratory classes as well as in the tutorials (at a predetermined time). For all teaching modalities, tutoring sessions may be carried out by telematic means (email, videoconference, FAITIC forums,) under the prior agreement modality.		
Tests	Description		
Essay questions exam	For an effective use of the students dedicatio, the teaching staff will personally attend to the doubts and queries of the student. This attention will take place both in the theory, problems and laboratory classes as well as in the tutorials (at a predetermined time). For all teaching modalities, tutoring sessions may be carried out by telematic means (email, videoconference, FAITIC forums,) under the prior agreement modality.		

Assessment					
	Description	Qualification	Tra Lear	iining a ning Re	ind sults
Laboratory practical	Each laboratory practice will be evaluated between 0 and 10 points, depending on the fulfillment of the objectives set in the statement of the same and the previous preparation and attitude of the students. Each practice may have different weighting in the total grade. Expected results from this subject: All of them.	25 / / /	A1 B A2 B A3 B A4 B A5	L C16 3 C38 4 5	D1 D2 D3 D4 D5
Report of practices, practicum and external practices	The memories of the selected practices will be evaluated between 0 and 10 points, taking into account the adequate reflection of the results obtained in the execution of the practice, its organization and quality of presentation.	5	A1 B A2 B A3 B A4 B A5	L C16 3 C38 4 5	D1 D2 D3 D4 D5
Essay questions exam	Final exam of the contents of the subject. All of them. and exercises, with a score between 0 and 10 points. Expected results from this subject: All of them.	70	A1 B A2 B A3 B A4 B A5	L C16 3 C38 4 5	D1 D2 D3 D4 D5

Other comments on the Evaluation

- A Continuous Evaluation of the work of the students in the practices will be carried out throughout the laboratory sessions established in the semester, being the assistance to them of obligatory character. In the case of not passing it, a practice exam will be carried out in the second call.

- Prerequisites may be required to carry out each practice in the laboratory, in such a way that they limit the maximum qualification to be obtained.

- The evaluation of the practices for the students who officially renounce the Continuous Evaluation, will be carried out in a practice exam in the two calls.

- Both tests (written and practical) must be passed to pass the subject, obtaining the total mark according to the percentage indicated above. In the case of not exceeding two or one of the parts, a scaling may be applied to the partial grades so that the total grade does not exceed 4.5.

- In the final exam, a minimum score may be established in a set of questions to pass it.

- In the second call of the same course, students must examine the tests not passed in the

first call, with the same criteria as that.

- According to the Continuous Assessment Regulations, students subject to Continuous Assessment who attend any assessable activity reflected in the Course Teaching Guide will be considered as "presented".

Calendar of examinations:

It can be accessed in the web page of the School of Mining and Energy Engineering:

http://minaseenerxia.uvigo.es/es/docencia/examenes

Sources of information

Basic Bibliography

E.MANDADO, J.MARCOS, C. FERNANDEZ, J.I.ARMESTO, Autómatas Programables y Sistemas de Automatización, 1ª Edición, Marcombo, 2009

MANUEL SILVA, Las Redes de Petri en la Automática y la Informática, 1ª Edición, AC, 1985

R. C. DORF, R. H. BISHOP, Sistemas de Control Moderno, 10ª edición, Prentice Hall, 2005

Complementary Bibliography

PORRAS A., MONTANERO A., Autómatas programables : fundamento, manejo, instalación y prácticas, McGraw-Hill, 2003

ROMERA J.P., LORITE J.A., MONTORO S., Automatización : problemas resueltos con autómatas programables, 4ª edición, Paraninfo, 2002

BARRIENTOS, ANTONIO, Control de sistemas continuos: Problemas resueltos, 1ª Edición, McGraw-Hill, 1997 OGATA, KATSUIKO, Ingeniería de Control Moderna, 1ª Edición, Pearson, 2010

Recommendations

Subjects that it is recommended to have taken before

Computing: Computing for Engineering/V09G291V01110 Circuits and Electrical Machines/V09G291V01201