Universida_{de}Vigo

Subject Guide 2023 / 2024

IDENTIFYII	NG DATA				
Mathemat	ical Models for the Environn	nent			
Subject	Mathematical				
	Models for the				
	Environment				
Code	V05M135V01205				
Study	Máster Universitario				
programme	en Matemática				
	Industrial				
Descriptors	ECTS Credits		Choose	Year	Quadmester
	6		Optional	1st	2nd
Teaching	Spanish				
language					
Department					
Coordinator	Busto Ulloa, Saray				
Lecturers	Busto Ulloa, Saray				
	Rodríguez Seijo, José Manuel				
E-mail	saray.busto@uvigo.es				
Web	http://www.m2i.es/docs/modu	los/MESimNumerica/ME	asica/5.%20Mode	los%20matema	ticos%20en%20medio%2
	0ambiente.pdf				
General	This course in focused on the	no ath a no atical no a dallin	a of onvironmont	l process inc	leading a garage along a sector

Training and Learning Results

description and pollution models.

Code

- B5 Poseer las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo, y poder emprender con éxito estudios de doctorado
- C1 (*)Alcanzar un conocimiento básico en un área de Ingeniería/Ciencias Aplicadas, como punto de partida para un adecuado modelado matemático, tanto en contextos bien establecidos como en entornos nuevos o poco conocidos dentro de contextos más amplios y multidisciplinares.
- C4 (*)Ser capaz de seleccionar un conjunto de técnicas numéricas, lenguajes y herramientas informáticas, adecuadas para resolver un modelo matemático.
- C7 (*)Saber modelar elementos y sistemas complejos o en campos poco establecidos, que conduzcan a problemas bien planteados/formulados.

Expected results from this subject	
Expected results from this subject	Training and
	Learning Results
Know the distinct mathematical models for environmental problems.	C1
Achieve formulate any concrete real problems how problems of control.	C7
Apply correctly the methods to resolve several examples.	C4
	C4
Making decisions: having to decide the method to use more convenient to resolve the problem like this as the suitable tools, inside the possible ones, for his presentation.	
Use of computers: as a tool of indispensable use to realize the numerical calculations correspondents to the models that study in the subject.	C4
Orientation to the attainment: developing and cultivating the enthusiasm when having achieved the full resolution of the entrusted problems.	B5

Contents		
Topic		
1. Introduction.	1.1. Role and stages of mathematical modeling.	
	1.2. Mathematical modeling.	
	1.3. Numerical simulation.	
	1.4. Types of models.	

First steps: modeling of biological populations.	2.1. Models of single species dynamics.
	2.2. Models of two species dynamics (competition, mutualism,
	commensalism, predator-prey, migration)
	2.3. Age-Structured Models of Population Dynamics.
3. Geophysical flows.	3.1. Introduction.
	3.2. Transport-diffusion models.
	3.3. Shallow water models.
	3.4. Adsorption and sedimentation.
	3.5. Dispersive flows models.
	3.6. Unidimensional models for rivers and channels.
	3.7. Pollution.
	3.8. GPR model.
4. Transport and diffusion models. Pollution.	4.1. Transport and diffusion.
	4.2. Phenomena involved in the study of pollution.
	4.3. Some problems of control of the spread of contamination.
5. Models for shallow waters: the Saint-Venant	5.1. Gravitational flow with free surface.
equations.	5.2. Shallow water equations.
·	5.3. Erosion and sedimentation.
6. Water pollution.	6.1. Adsorption and absorption.
	6.2. Simplified pollution models.
7. Alternative models for shallow waters.	7.1. Models for dispersive flows.
	7.2. Multilayer models.
8. Other models with applications in the	8.1. Models for subsurface waters. Richards equation.
environment.	8.2. GPR model for continuum mechanics.

Planning			
	Class hours	Hours outside the classroom	Total hours
Lecturing	45	90	135
Problem solving	3	6	9
Problem and/or exercise solving	1	2	3
Essay questions exam	1	2	3
L33dy questions exam	<u>+</u>		

^{*}The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies	
	Description
Lecturing	Presentation of the main theoretical contents of the subject.
Problem solving	Solution of problems and brief introduction to further methods extending the content of lectures from a practical point of view. Small exercises will be proposed to the students aiming at applying the knowledge acquired.

Personalized assistance			
Methodologies Description			
Lecturing	The professor will personally attend the doubts and queries of the students both online (videoconference system and moodle) or onsite (during lessons or tutorials).		
Problem solving	The professor will personally attend the doubts and queries of the students both online (videoconference system and moodle) or onsite (during lessons or tutorials).		

Assessment			
	Description	Qualification	Training and
			Learning Results
Problem and/or exercise	Evaluated throught:	50	C1
solving			C4
	a) Assistance and active participation at lessons.		C7
	b) Development of exercises to be proposed by the professor during lessons.		
Essay questions exam	Final examination of the subject.	50	C1
			C4
			C7

Other comments on the Evaluation

Sources of information

Basic Bibliography

C.R. Hadlock, Mathematical modeling in the environment, Mathematical Association of America, 1998

N. Hritonenko [] Y. Yatsenko, **Mathematical modeling in economics, ecology and the environment**, Kluwer Academic Publishers, 2013

J. Pedlosky, **Geophysical fluid dynamics**, Springer Verlag, 1987

Complementary Bibliography

S.C. Chapra, Surface water-quality modelling, WCB/McGraw Hill, 1997

P.L. Lions, Mathematical topics in fluid mechanics. Vol. 2: Compressible models, Clarendon Press, 2013

G.I. Marchuk, Mathematical models in environmental problems, North-Holland, 1986

J.C. Nihoul, **Modelling of marine systems**, Elsevier, 1975

L. Tartar, An introduction to Navier-Stokes equation and oceanography, Springer Verlag, 2006

R.K. Zeytounian, **Meteorological fluid dynamics**, Springer Verlag, 1991

Recommendations

Subjects that continue the syllabus

Professional Software in Environment/V05M135V01216

Subjects that are recommended to be taken simultaneously

Advances in Finite Volumes/V05M135V01219

Subjects that it is recommended to have taken before

Partial Differential Equations/V05M135V01103
Mechanics of Continuous Media/V05M135V01105
Optimisation and Control/V05M135V01106

Other comments

It is recommended:

- 1. Assistance and active participation at lessons.
- 2. Weekly study.