Universida_{de}Vigo

Subject Guide 2022 / 2023

IDENTIFYIN	IG DATA			7777777777
	of materials			
Subject	Resistance of			
,	materials			
Code	V12G380V01402			
Study	Grado en			
programme	Ingeniería			
	Mecánica			
Descriptors	ECTS Credits	Choose	Year	Quadmester
	6	Mandatory	2nd	2nd
Teaching	Spanish			
language	Galician			
Department				
Coordinator	Caamaño Martínez, José Carlos			
	Riveiro Rodríguez, Belén			
Lecturers	Caamaño Martínez, José Carlos			
	Cabaleiro Núñez, Manuel			
	Caride Tesouro, Luís Miguel			
	Conde Carnero, Borja			
	Fuentes Fernández, Eugenio Ignacio			
	Pereira Conde, Manuel			
	Riveiro Rodríguez, Belén			
E-mail	jccaam@uvigo.es			
	belenriveiro@uvigo.es			
Web	http://moovi.uvigo.gal/			
General	Introduction to linear elastic materials, and analysis of			
description	of the fundamentals of mechanics of materials and p	articularization fo	r shafts and bea	am structures.
Skills				
Code				
B3 CG3 Kn	owledge in basic and technological subjects that will e	nable students to	learn new meth	ods and theories, and
	them the versatility to adapt to new situations.			,'
	ility to solve problems with initiative, decision making,	creativity, critical	l thinking and th	ne ability to communicate
	nsmit knowledge and skills in the field of industrial eng			-
014 051414				

C14 CE14 Knowledge and use of the principles of strength of materials.

 C14
 CE14
 CHowledge and use of the principles of strength of materials.

 D1
 CT1 Analysis and synthesis

 D2
 CT2 Problems resolution.

 D9
 CT9 Apply knowledge.

 D10
 CT10 Self learning and work.

 D16
 CT16 Critical thinking.

 D17
 CT17 Working as a team.

Learning outcomes				
Expected results from this subject		Training and Learning		
		Res	ults	
To know the differences between rigid solid and elastic solid.	B3	C14	D1	
To know the stress and deformation states in a deformable solid and the relationship between	B4		D2	
them.			D9	
Apply the acquired knowledge to the determination of the maximum values of stress at a point of a			D10	
deformable solid.			D16	
T know the basic principles governing the Mechanics of Materials.			D17	
To know the relationships between the different stress resultants and the stresses.				
To apply the knowledge acquired to the determination of stress resultant diagrams.				
To apply the acquired knowledge about stresses applied to bar elements.				
To know the basics about deformations of bar elements.				
To apply the knowledge acquired to the dimensioning of her elements				

To apply the knowledge acquired to the dimensioning of bar elements.

Contents			
Торіс			
1. Introduction	1.1 Introduction		
	 1.2 Review of statics fundamentals and applied concepts for further 		
	progress in solid mechanics and stress analysis		
2. Basic principles of elasticity and mechanics of	2.0 Stress and strain. Linear elastic materials		
materials.	2.1. Normal stress in an axially loaded prismatic bar.		
	2.2. Equilibrium of a deformable body.		
	2.3. Stress-Strain diagram of ductile materials. Hooke		
	2.4. Stress resultants. Diagrams.		
3. Axial loads	3.1. Normal forces.		
	3.2. Elastic deformation of an axially loaded member.		
	3.3. Statically governed problems.		
	3.4. Statically indeterminate problems.		
	3.5. Thermal stress and assembly misfits.		
4. Bending	4.1 Beams: definition and types. Loads on beams.		
	4.2 Internal shear forces and bending moments.		
	4.3 External load, shear force and bending moment relationships.		
	4.4 Shear and moment diagrams		
	4.5 Pure bending and non-uniform bending. Hypothesis and limitations.		
	4.6. Normal stresses in unsymmetric bending.		
	4.7 Symmetric bending. The flexure formula (Navier🛛 s Law).		
	4.8 Section modulus of a beam. Ideal beam cross-section.		
	4.9 Deflection of beams and shafts. Slope and deflection. Mohr		
	Theorems.		
	4.10 Hyperstatic bending.		
5. Other forces: shear, buckling and torsion	5.1. Shear in joints. Definition. Shear force. Shear stress. Bolted and		
	riveted joints. Shear joints.		
	5.2. Introduction to the concept of compressive buckling.		
	5.3. Intoduction to the concept of torsion in straight prisms.		

Planning			
	Class hours	Hours outside the classroom	Total hours
Lecturing	32.5	49	81.5
Laboratory practical	9	23	32
Project based learning	9	24.5	33.5
Essay questions exam	3	0	3
*The information in the planning table	is for guidance only and does no	ot take into account the het	erogeneity of the students.

Methodologies	
Methodologies	Description
Lecturing	Lecture where theoretical principles are presented using digital media, videos and blackboard.
Laboratory practical	Activities of application of the knowledge to concrete situations and of acquisition of basic skills and
	procedural skills related with the subject of study.
Project based learning	Resolution of problems related to real case studies.

Methodologies	Description	
	The students can ask the lecturers for the clarification of those concepts presented in the lecturers and practicals, as well as to clarify / discuss any doubts that may appear after the end of the sessions. The tutoring sessions may be carried out by telematic means (Remote Campus, Faitic, etc.) under the modality of prior agreement.	

Assessment

Description

Qualification Training and Learning Results

Laboratory practical	A) it will evaluate the attendance and active participation in all the practicals of the semester, as well as the correct delivery (time and form) of all the documentation requested (reports, exercises, etc.). Practical sessions will be held in a fixed date, so it is not possible to attend the practical in a later date. Whether the student does not attend to a practical, he/she must demonstrate that the absence was due to unavoidable reasons (e.g. medical reasons). Practicals will marked with the value indicated, only when the student reaches the minimum mark in the written exam, which is 45%. (See following section: 'Other comments')	2.5	B3 C14 B4	D1 D2 D9 D10 D16 D17
Project based learning	C) Written tests to evaluate the individual work delivered by the student. It will be compulsory the attendance to the 90% of the practicals to obtain the marks given in section C. The marks obtained in the sections A will proportionally affect to the marks of the section C. The section C will be marked with a maximum value of 12,5% of the total mark, only when the student reach the minimum mark in the written exam, which is 45%. (See following section: 'Other comments')	12.5	B3 C14 B4	D1 D2 D9 D10 D16
Essay questions exam	Written exam in the dates established by the School.	85	B3 C14 B4	D1 D2 D9 D10 D16

Other comments on the Evaluation

Students resigning continuum assessment (after School aproval) will be evaluated only through the written exam which will be graded with 100% of final mark.

Continuum assessment is composed of sections A and C. The maximum mark for continuum assessment (NEC) is 15%, which will be computed from the following equation: NEC (%) = $0.25 \cdot (A) + 1.25 \cdot (C) \cdot (A)$; where A and C are granted 0-1.

Ethical commitment: it is expected an adequate ethical behavior of the student. In case of detecting unethical behaviour (copying, plagiarism, unauthorized use of electronic devices, etc.) shall be deemed that the student does not meet the requirements for passing the subject.

In this case, the overall rating in the current academic year will be Fail (0.0).

The use of any electronic device for the assessment tests is not allowed unless explicitly authorized. The fact of introducing unauthorized electronic device in the examination room will be considered reason for not passing the subject in the current academic year and will hold overall rating (0.0).

Sources of information	
Basic Bibliography	
Hibbeler, R., Mechanics of Materials,	
Manuel Vázquez, Resistencia de materiales ,	
Complementary Bibliography	
Ortiz Berrocal, L., Resistencia de materiales, Ed. McGraw-Hill,	
González Taboada, J.A., Tensiones y deformaciones en materiales elásticos, Ed. Autor,	
González Taboada, J.A., Fundamentos y problemas de tensiones y deformaciones en materiales elás	sticos, Ed.
Autor,	

Recommendations

Other comments

Requirements: To register for this module the student must have passed or be registered for all the modules of the previous year.