Universida_{de}Vigo

Subject Guide 2022 / 2023

IDENTIFYIN	G DATA			
Chemical te	chnology			
Subject	Chemical			
	technology			
Code	V12G363V01606			
Study	Grado en			
programme	Ingeniería en			
	Tecnologías			
	Industriales			
Descriptors	ECTS Credits	Choose	Year	Quadmester
	6	Mandatory	3rd	2nd
Teaching	English			
language				
Department				
Coordinator	Rosales Villanueva, Emilio			
Lecturers	Rosales Villanueva, Emilio			_
	Sanroman Braga, María Ángeles			
E-mail	emiliorv@uvigo.es			
Web				
General	In this subject, students learn the basic aspe	ects of Chemical Engineerin	g and the fu	indamentals of the basic
description	operations most employed in industry.			

Skills

Code

- B3 CG3 Knowledge of basic and technological subjects that enable students to learn new methods and theories, and to adapt to new situations.
- B4 CG4 Ability to solve problems through initiative, decision-making, creativity, critical reasoning, and to communicate and transmit knowledge, skills and abilities in the field of industrial engineering.
- C4 CE4 Ability to understand and apply the basic knowledge of general chemistry, organic chemistry and inorganic chemistry, and their applications in engineering.
- D2 CT2 Problem solving.
- D9 CT9 Application of knowledge.
- D10 CT10 Self learning and work.
- D17 CT17 Working as a team.

Learning outcomes					
Expected results from this subject		Training and Learning			
	Results		sults		
To know the bases of chemical technology.	В3	C4	D9		
To apply mass and energy balances to real systems.	B4	C4	D2		
			D9		
			D10		
			D17		
To know and understand the basic aspects of mass transfer.	В3	C4	D9		
To know the fundamentals of separation processes and their application to real cases.	B4	C4	D2		
			D9		
			D10		
			D17		

Contents	
Topic	
Introduction	Chemical Engineering. Basic principles. Chemical processes. Unit conversion and calculation tools
Mass and energy balances	Mass balances for systems without chemical reaction. Mass balances for systems with chemical reaction. Energy balances

Implementation of balances into chemical reactor Stoichiometry. Reaction rate. Ideal reactors design

Mass transfer	Introduction. Mass transfer equations: individual and global coefficients
Distillation and rectification of liquid mixtures	Vapour-liquid equilibrium. Simple distillation. Rectification. Azeotropic and
	extractive distillation.
Liquid-liquid extraction	Fundamentals. Binary and ternary mixtures. Factors that affect the separation. Operation by simple contact, multiple contact in direct current, multiple contact in multiple countercurrent
Other operations in chemical processes	Gas absorption. Liquid-solid extraction. Adsorption and ion exchange.

Planning			
	Class hours	Hours outside the classroom	Total hours
Lecturing	20	40	60
Problem solving	17	31	48
Laboratory practical	8	8	16
Problem and/or exercise solving	2	8	10
Report of practices, practicum and externa	l practices 0	2	2
Essay questions exam	3.5	10.5	14

^{*}The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies	
	Description
Lecturing	Direct oral exposition of the most important contents of the subject by the lecturer.
Problem solving	The lecturer suggests various problems to the students so they can work on them at home. Then, the lecturer solves them in the seminar classes.
Laboratory practical	The students will perform some experiments in the laboratory, solving problems in seminar classes and field practices in companies related to the topics covered throughout the course. In addition, the students will evaluate different processes using simulation software. The aim of the laboratory practices is to deepen basic concepts.

Personalized assistance		
Methodologies	Description	
Lecturing	The students can ask the lecturer any question about the theoretical and practical aspects of this subject, about this methodology and the correction of the assessment tests.	
Problem solving	The students can ask the lecturer any question about the theoretical and practical aspects of this subject, about this methodology and the correction of the assessment tests.	
Laboratory practica	The students can ask the lecturer any question about the theoretical and practical aspects of this subject, about this methodology and the correction of the assessment tests.	

Assessment					
	Description		Training and		g and
			I	_earr	ning
		Results		ılts	
Problem and/or	The students will carry out various tests with problems and short-answer	30	В3	C4	D2
exercise solving	questions. The average mark will represent 30% of the final mark.		В4		D9
Report of practices,	Apart from the mark of the practice report, the lecturer will take into	10		C4	D9
practicum and	account the attendance as well as the attitude that the students have or	1			D10
external practices	the practices.				D17
Essay questions exam	Theoretical-practical exam of the basic concepts and procedures related	60	В3	C4	D2
	to the subject matter, in the date fixed by the Centre.		В4		D9

Other comments on the Evaluation

ASSESSMENT: The participation of the student in any of the evaluation systems of the subject (laboratory practicals, problem solving and exercises) will imply that the student effectively take the subject and its qualification. A minimum attendance of 75% of the practices is required to have the right to the evaluation of the same. Otherwise, the mark for this section will be 0.0 and they will have to take an exam in the final exam. A student who "officially renounces continuous assessment", will fail if he/she does not achieve a MINIMUM mark of 4.0 points (out of 10) in each of the parts of the "FINAL EXAMINATION". If the minimum mark in the "FINAL EXAMINATION" is passed, the student will pass the course if the FINAL GRADE is ≥ 5.0 , that is, if the sum of the marks obtained in the different systems of evaluation of the course is ≥ 5.0 . **Second call:**The same criteria will be applied in the second sitting. With regard to the July exam, the grade of the different assessment systems (laboratory practicals, problem solving and exercises) will be maintained, so students will only take the "FINAL EXAM"

STUDENTS RELEASED FROM CONTINUOUS ASSESSMENT:When the School releases a student from the continuous assessment process, his/her grade will be the sum of 90% of the mark obtained in the "FINAL EXAM" and 10% of the laboratory practicals mark.

ETHICAL COMMITMENT: The student is expected to present adequate ethical behaviour. In the event that unethical behaviour is detected (copying, plagiarism, unauthorized use of electronic devices, etc.), it will be considered that the student does not meet the necessary requirements to pass the subject. In that case, the overall rating in the current academic year will be [fail (0.0)]. The use of any electronic device for the assessment exams is not allowed unless explicitly authorised. The fact of introducing unauthorised electronic devices in the examination room will be considered as a reason for not to pass the subject in the current academic year and will hold overall rating (0.0).

Sources of information

Basic Bibliography

Himmelblau, D.M., **Basic principles and calculations in chemical engineering**, 7th, Prentice Hall International, 2004 Felder, R.M. and Rousseau, R.W., **Elementary principles of chemical processes**, 3rd, John Wiley & Sons, Inc., 2005

Chopey, N.P., **Handbook of Chemical Engineering Calculations**, 3rd, McGraw-Hill Companies, 2003

Fogler, H.S., Elements of Chemical Reaction Engineering, 5th, Prentice Hall International,

Levenspiel, O., Chemical Reaction Engineering, 3rd,

Coulson, J.M. and others, Chemical Engineering vol. 1 and vol 2, 5th, Butterworth-Heinemann, 2002

McCabe, W.L., Smith, J.C. and Harriott, P., **Unit operations of chemical engineering**, 5th, McGraw-Hill International Editions, 1993

Seader, J.D., Henley, E.J., Roper, D.K., **Separation process principles. Chemical and Biochemical Operations**, 3rd, John Wiley & Sons, Inc., 2011

Complementary Bibliography

Treybal, R.E., Mass-transfer operations, 3rd,

Ocón, J. y Tojo, G., Problemas de Ingeniería Química, 3rd,

Recommendations

Subjects that it is recommended to have taken before

Physics: Physics 1/V12G360V01102 Physics: Physics 2/V12G360V01202 Mathematics: Calculus 1/V12G360V01104

Mathematics: Calculus 2 and differential equations/V12G360V01204

Chemistry: Chemistry/V12G360V01205

Other comments

Requirements: To enrol in this subject, it is necessary to have passed or be enrolled in every subject of inferior courses. In case of discrepancies, it will prevail the Spanish version of this document.