Universida_{de}Vigo

Subject Guide 2022 / 2023

IDENTIFYIN	<u> </u>			
Propulsion	•			
Subject	Propulsion systems			
Code	007G410V01945			
Study	Grado en			
programme	Ingeniería			
	Aeroespacial			
Descriptors	ECTS Credits	Choose	Year	Quadmester
	6	Optional	4th	1st
Teaching	#EnglishFriendly			
language	Spanish			
Department				
Coordinator	Ulloa Sande, Carlos			
Lecturers	Ulloa Sande, Carlos			
E-mail	carlos.ulloa@uvigo.es			
Web	http://aero.uvigo.es			
General description	The matter treats on the problems of development of The systems of aeronautical and space propulsion are			
acscription	from the very small push during several years of perf			
	employed in satellites, until the very big push acting			
	launcher or of an intercontinental ballistic missile.			·
	English Friendly subject: International students may i			
	references in English, b) tutoring sessions in English,	c) exams and ass	sessments in Eng	ılish.

Skills

Code

- A2 That the students know how to apply their knowledge to their work or vocation in a professional way and that they possess the competences that are usually demonstrated through the elaboration and defense of arguments and the resolution of problems within their area of study
- A3 That the students have the capability to gather and interpret relevant data (usually within their area of study) to issue judgments that include a reflection on relevant social, scientific or ethical issues
- A5 That the students develop those learning capabilities necessary to undertake further studies with a high degree of autonomy.
- B1 Capability for design, development and management in the field of aeronautical engineering (in according with what is established in section 5 of order CIN / 308/2009), aerospace vehicles, aerospace propulsion systems, aerospace materials, airport infrastructures, air navigation infrastructures and space management, air traffic and transport management systems.
- C29 Appropriate knowledge applied to engineering: concepts and laws that govern the internal combustion, its application to rocket propulsion.
- C33 Applied knowledge of aerodynamics, flight mechanics, air defense engineering (ballistics, missiles and air systems), space propulsion, material science and technology, structure theory.
- D3 Capability of oral and written communication in native lenguage
- D4 Capability of autonomous learning and information management
- O5 Capability to solve problems and draw decisions
- D6 Capabiliity for interpersonal communication
- D8 Capabiliity for critical and self-critical reasoning
- D11 Show motivation for quality with sensitivity towards subjects within the scope of the studies
- D13 Sustainability and environmental commitment. Equitable, responsible and efficient use of resources

Learning outcomes	
Expected results from this subject	Training and Learning
	Results

- To know the propulsive needs of the aircraft.	A2 A3 A5	B1	C29 C33	D3 D4 D5 D6 D8 D11 D13
- To know the thrusts and resistances related to the jet engines.	A2 A3 A5	B1	C29	D3 D4 D5 D6 D8 D11 D13
- To know and quantify in an applied way the combustion process of the jet engines and the combustion efficiency.	A2 A3 A5	B1	C29	D4 D5 D8 D11 D13
- To know how to perform an energy balance by differentiating and calculating the returns involved.	A2 A3 A5	B1	C29	D4 D5 D8 D11 D13
- To know how to solve problems related to the calculation of thermodynamic cycles and the characteristics of the jetreactors; as well as the effect of the characteristics and quality of the components.	A2 A3 A5	B1	C29	D4 D5 D8 D11 D13
- To know the different jet engines and know how to obtain the optimal systems from the point of view of propulsive.	A2 A3 A5	B1	C29	D3 D4 D5 D11 D13
- To size the components that intervene in the propulsive system.	A2 A3 A5	B1	C33	D4 D5 D8
- To use computer tools to calculate the performance of air-reactors.	A2 A3 A5	B1	C29	D4 D5 D8
- To know the effect of flight conditions: speed and altitude in the operation of the air-reactors.	A2 A3 A5	B1	C33	D4 D8
- To know the environmental problems of the jet engines and their possible solutions.	A2 A3 A5	B1	C29	D4 D13
- To write technical reports and make oral technical presentations related to the above.	A2 A3 A5	B1	C29 C33	D3 D6 D8 D11 D13
- To solve problems derived from the field of the subject in an autonomous way and in collaboration with others.	A2 A3 A5	B1	C29 C33	D5 D6 D8
- Knowledge and understanding of the laws that govern the movement of vehicles propelled with rocket engines; the generation of thrust and the variables on which it depends.	A2 A3	B1	C29	D4 D8
- Knowledge, understanding, application and analysis of the ideal model of the rocket engines with fluid dynamics propulsion and the influence of real effects.	A2 A3 A5	B1	C29 C33	D4 D5 D8
- Knowledge of the propellants and understanding and the combustion process of the rocket motors of solid, liquid and hybrid propellants.	A2 A3 A5	B1	C29	D4 D8
- Knowledge, understanding, application and analysis of the ionization and acceleration system of electric rocket motors.	A2 A3 A5	B1	C33	D4 D8
- Knowledge, understanding, application and analysis of the feeding and cooling systems.	A2 A3 A5	B1	C33	D4 D8

- To train to understand and simulate the physical-mathematical processes of rocket engines and	A2	В1	C29	D4	
to address both the problem of actions such as the synthesis or design.	А3		C33	D5	
	Α5			D8	

Contents	
Topic	
Block 1: Introduction	Unit 1.1: Introduction to aircraft propulsion systems.
	Unit 1.2: Alternative engines.
	Unit 1.3: Turbo-propeller and turbo-shaft.
Block 2: Rockets	Unit 2.1: Introduction
	Unit 2.2: Description and operating principles
	Unit 2.3: Chemical rockets
	Unit 2.4: Electric propulsion
Block 3: Turbojet and turbofan	Topic 3.1: Turbojet and turbofan Engine Overview
	Topic 3.2: Operation of the jet engine
	Topic 3.3: Intake diffusers
	Topic 3.4: Compressors
	Topic 3.5: Combustion chambers
	Topic 3.6: Turbines
	Topic 3.7: Nozzles
	Topic 3.8: Parametric analysis of turbojet and turbofan

Planning			
	Class hours	Hours outside the classroom	Total hours
Lecturing	28	0	28
Laboratory practical	12	6	18
Seminars	0	2	2
Previous studies	0	79.5	79.5
Mentored work	10	10	20
Objective questions exam	2.5	0	2.5

^{*}The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies	
	Description
Lecturing	Classroom lectures
Laboratory practical	Labs with different propulsion systems
	Simulation labs of propulsion systems
	Essays assignments on propulsion systems
Seminars	Tutoring in small groups
Previous studies	Autonomous work
Mentored work	Mentored work

Personalized assistance Methodologies Description Seminars Small group tutoring with the teachers of the subject. The tutorials will be held, preferably, by appointment, in the teacher's virtual office, on the Remote Campus.

Assessment					
	Description	Qualification	Traini	ng and L Results	
Laboratory practical	Laboratory report	A	A2 B1 A3 A5	C29 C33	D3 D4 D5
		ĺ	15		D6 D8
					D11 D13

Mentored work	Reports and presentations of the work proposed during the course of the course within the practical sessions	20	A2 A3 A5	B1	C29 C33	D3 D4 D5 D6 D8 D11 D13
Objective questions exam	Partial exam of short questions and problems (20%) (Percentage can be divided into shorter tests) Final exam of short questions and problems (50%)	70	A2 A3 A5	B1	C29 C33	D3 D4 D5 D8 D11 D13

Other comments on the Evaluation

The evaluation of the course at the first opportunity will be carried out by Ongoing Assessment. Students who have a justification may officially waive the ongoing assessment and ask for a first oportunity final exam, on the official date. The grade obtained in this exam will represent 100% of the final grade. This exam may have a part to do in a computer room and / or laboratory. The waiver of ongoing assessment must be made during the first month of class. During this period, the justification of the resignation will be presented to the coordinator of the subject for evaluation. If this justified resignation is not done, the calification reflected in the first call report will be "not presented".

To pass the course at the first opportunity, a score greater than 5 points out of 10 will be required in the continuous evaluation during the development of classes and the exam on the official date, toghether. The final grade will be obtained according to the indicated percentages.

Ongoing assessment is not passed in the following cases:

- The non-execution or delivery, without justification, of any of the items of the ongoing assessment (works reports, practicum reports, exams ...). In this case, the final grade reflected in the official record will be "not presented"
- Obtaining a grade of less than 5 points out of 10 in the final exam of ongoing assessment. In this case, the final grade reflected in the official record will be the grade of the ongoing assessment final exam.

The evaluation of the course in the second opportunity and end of studies will be carried out in a final exam on the date set by the center. The grade obtained in this exam will represent 100% of the final grade. This exam may have a part to do in a computer room and / or laboratory.

To pass the subject in the second opportunity and end of studies, a score higher than 5 points out of 10 will be required in the exam on the official date.

Plagiarism is regarded as serious dishonest behavior. If any form of plagiarism is detected in any of the tests or exams, the final grade will be FAIL (0), and the incide nt will be reported to the corresponding academic authorities for prosecution.

The evaluation test schedule officially approved by the EEAE Center Board is published on the website http://aero.uvigo.es/gl/docencia/exames

The maximum length of the exams will be 3 hours if there is no interruption, and 5 hours if there is an intermediate break (maximum 3 hours for each part).

Ongoing assessment evaluation activities will be carried out during official timetable hours.

Sources of information
Basic Bibliography
B. Galmés, Motores de reacción y turbinas de gas, 2, Paraninfo, 2018
J.D. Mattingly, Elements of Propulsion: Gas Turbines and Rockets , 2, AIAA Education Series, 2016
M. Cuesta, Motores de reacción , 9, Paraninfo, 2001
Complementary Bibliography
Y. Cengel, Themodynamics: An engineering approach , 9 in SI, McGraw-Hill, 2019

Recommendations

Subjects that it is recommended to have taken before