Universida_{de}Vigo Subject Guide 2021 / 2022 | <i>*</i> | | LEV XXX X IV X | 5 | ubject Guide 2021 / 2022 | |------------------------|---|---------------------|-------------|--| | IDENTIFYIN | C DATA | | | | | | | | | | | Physics: Ph
Subject | Physics: Physics I | | | | | Code | V12G750V01102 | | | | | Study | PCEO Grado en | , | | , | | programme | Ingeniería | | | | | . 3 | Biomédica/Grado | | | | | | en Ingeniería | | | | | | Mecánica | | | | | Descriptors | ECTS Credits | Choose | Year | Quadmester | | | 6 | Basic education | 1st | <u>1st </u> | | Teaching | Spanish
Galician | | | | | language
Department | Galiciali | | | | | Coordinator | Lusquiños Rodríguez, Fernando | | | | | Lecturers | Añel Cabanelas, Juan Antonio | | | | | Lecturers | Blanco García, Jesús | | | | | | Boutinguiza Larosi, Mohamed | | | | | | Cabaleiro Álvarez, David | | | | | | Iglesias Prado, José Ignacio | | | | | | Legido Soto, José Luís | | | | | | Lusquiños Rodríguez, Fernando | | | | | | Méndez Morales, Trinidad | | | | | | Ribas Pérez, Fernando Agustín
Sánchez Vázquez, Pablo Breogán | | | | | | Serra Rodríguez, Julia Asunción | | | | | | Soto Costas, Ramón Francisco | | | | | | Trillo Yáñez, María Cristina | | | | | E-mail | flusqui@uvigo.es | | | | | Web | http://moovi.uvigo.gal/ | | | | | General | (*)Física do primeiro curso das Enxeñarías da rama Ind | ustrial | | | | description | | | | | | | | | | | | Skills | | | | | | Code | | | | | | | | | | | | Learning ou | | | | | | | ults from this subject | | | Training and Learning
Results | | | prensión y dominio de los conceptos básicos sobre las l | eyes generales de | la mecánica | | | | ondas y su aplicación para la | | | | | | e problemas propios de la ingeniería. | nacita naza al azza | andinale de | | | | cimiento en materias básicas y tecnológicas, que les ca
dos y teorías, y les dote de | pacite para ei apre | enaizaje de | | | | para adaptarse a nuevas situaciones. | | | | | | ndizaje y trabajo autónomos. | | | | | New | .a.a.ju ji dadajo datonomosi | | | | | | | | | | | Contents | | | | | | Topic | | | | | | . opic | | | | | | 1 UNITS, PHYSICAL AMOUNTS AND VECTORS | 1.1 The nature of Physics. 1.2 Consistency and conversions of units. 1.3 Uncertainty and significant figures. 1.4 Estimates and orders of magnitude. 1.5 Vectors and sum of vectors. 1.6 Vector components. 1.7 Unitary vectors. 1.8 Vector products. 1.9 Sliding Vectors | |--|---| | 2 CINEMATIC OF THE POINT | 2.1 Vectors of position, speed and acceleration. Half and instantaneous values 2.2 Vectors angular speed and angular acceleration. Half and instantaneous values. 2.3 Relation between linear cinematic magnitudes and angular 2.4 Intrinsic components. 2.5 Study of simple movements: *mov. Rectilinear, *mov. Circulate, shot *oblicuo 2.6 Expressions of cinematic magnitudes in coordinates *cartesianas and polar | | 3 LAWS OF THE MOVEMENT OF NEWTON | 3.1 Strength and interactions. 3.2 First law of Newton. Systems of inertial and non inertial references 3.3 Second law of Newton. 3.4 Mass and weight. 3.5 Third law of Newton. 3.6 Quantity of movement. Mechanical impulse. Angular moment. 3.7 Strengths of contact: active, of *ligadura. | | 4 WORK AND KINETIC ENERGY | 4.1 Work realized by a Force. Power. 4.2 Kinetic Energy. 4.3 Conservative Forces 4.4 Elastic potential energy. 4.5 Potential energy in the gravitatory field. 4.6 Mechanical energy. 4.7 Strength and potential energy. 4.8 Principle of conservation of the mechanical energy. | | 5 KINEMATICS OF SYSTEM OF POINTS | 5.1 Points system. 5.2 Rigid solid. 5.3 Translation movement. 5.4 Movement of rotation around a fixed axis. 5.5 General movement. 5.6 Instant center of rotation. 5.7 Rolling motion. 5.8 Relative movement. | | 6 DYNAMICS OF THE SYSTEMS OF PARTICLES | 6.1 Systems of particles. Inner and exterior strengths. 6.2 Center of masses of the system. Movement of the c.o.m. 6.3 Equations of the movement of a system of particles. 6.4 Linear moment. Theorem Of conservation. 6.5 Angular moment of a system of particles. Theorem Of conservation. 6.6 Work and power. 6.7 Potential energy and kinetics of a system of particles. 6.8 Theorem Of the energy of a system of particles. 6.9 Crashes. | | 7 DYNAMICS OF THE RIGID SOLID | 7.1 Rotation of a rigid solid around a fixed axis. 7.2 Moments and products of inertia. 7.3 Calculation of moments of inertia. 7.4 Steiner's theorem. 7.5 Moment of a force and pair of forces. 7.6 Equations of the general movement of the rigid solid. 7.7 Kinetic energy in the general movement of the rigid solid. 7.8Work in the general movement of the rigid solid. | | 8 STATIC | 7.9 Angular moment of a rigid solid. Conservation theorem. 8.1 Balance of rigid solids. 8.2 Center of gravity. 8.3 Stability. 8.4 Degrees of freedom and ligatures | | 9.1 Description of the oscillation. 9.2 Simple harmonic movement. 9.3 Energy in the simple harmonic movement. 9.4 Applications of simple harmonic movement. 9.5 The simple pendulum. 9.6 The physical pendulum. 9.7 Damped oscillations. 9.8 Forced oscillations and resonance. | | |---|--| | 10 FLUID MECHANICS | 10.1 Density. 10.2 Pressure in a fluid. 10.3 Fundamental principles of Fluidostática. 10.4 Continuity equation. 10.5 Bernoulli equation. | | 11 MECHANICAL WAVES | 11.1 Types of mechanical waves. 11.2 Periodic waves. 11.3 Mathematical description of a wave. 11.4 Speed of a transverse wave. 11.5 Energy of the wave movement. 11.6 Wave interference, boundary conditions and superposition. 11.7 Stationary waves on a string. 11.8 Normal modes of a rope. | | LABORATORY | Theory of Measurements, Errors, Graphs and Adjustments. Examples Reaction Time. Determination of the density of a body. Relative Movement. Instantaneous speed. Study of the Simple Pendulum. Experiences with a helical spring. Damped and forced oscillations. Moments of inertia. Determination of the radius of rotation of a body. Stationary waves. | | LABORATORY NO STRUCTURED | 1. Sessions with activities no structured (open practice) that range the theoretical contents of the practices enumerated up. The groups of students have to resolve a practical problem proposed by the professor, selecting the theoretical frame and experimental tools to obtain the solution; for this, dispondrán of basic information and guide of the professor | | Planning | | | | |--|----------------|-----------------------------|-------------| | | Class hours | Hours outside the classroom | Total hours | | Lecturing | 24.5 | 45 | 69.5 | | Problem solving | 8 | 20 | 28 | | Laboratory practical | 18 | 18 | 36 | | Objective questions exam | 1 | 0 | 1 | | Problem and/or exercise solving | 3.5 | 0 | 3.5 | | Essay questions exam | 3 | 0 | 3 | | Report of practices, practicum and externa | al practices 0 | 9 | 9 | | | · | | | ^{*}The information in the planning table is for guidance only and does not take into account the heterogeneity of the students. | Methodologies | | |----------------------|--| | | Description | | Lecturing | Exhibition by part of the professor of the contents on the subject object of study, theoretical bases and/or guidelines of a work, exercise or project to develop by the student. | | Problem solving | Activity in which formulate problem and/or exercises related with the asignatura. The student has to develop the felicitous or correct solutions by means of the ejercitación of routines, the application of formulas or algorithms, the application of procedures of transformation of the available information and the interpretation of the results. suele Use as I complement of the lesson magistral. | | Laboratory practical | Activities of application of the knowledges to concrete situations and of acquisition of basic skills and procedimentales related with the subject object of study. They develop in special spaces with equipment especializado (laboratories, classrooms informáticas, etc). | | Personalized assistance | | | |-------------------------|-----------------|--| | Methodologies | Description | | | Lecturing | In office hours | | | Laboratory practical | in office hours | |---|-----------------| | Problem solving | In office hours | | Tests | Description | | Objective questions exam | In office hours | | Problem and/or exercise solving | In office hours | | Essay questions exam | In office hours | | Report of practices, practicum and external practices | In office hours | | Assessment | | | | |--|---|---------------|--| | | Description | Qualification | Training
and
Learning
Results | | Objective questions exam | s Tests for evaluating the acquired competences that include closed questions with different answer alternatives (true / false, multiple choice, pairing of elements). Students select an answer from a limited number of possibilities. | n 10 | | | Problem and/or exercise solving | Test in which the student must solve a series of problems and / or exercises in a time / condition established by the teacher. In this way, the student must apply the knowledge they have acquired. | 40 | | | Essay questions exam | Competency assessment tests that include open-ended questions on a topic. Students must develop, relate, organize and present the knowledge they have or the subject in an extensive answer. | 40
1 | | | Report of practices practicum and external practices | , Preparation of a document by the student that reflects the characteristics of the work carried out. Students must describe the tasks and procedures developed, show the results obtained or observations made, as well as the analysis and treatment of data. | 10 | | #### Other comments on the Evaluation The qualification of the continuous evaluation (which we will call EC) will have a weight of 40% of the final grade and will include both the contents of the laboratory practices (weight of 20%, which we will call ECL qualification) and of the classroom (weight of 20%, which we will call ECA qualification). The ECA qualification will be obtained through theoretical-practical tests (they will be able to understand objective questions and / or development questions) on classroom content. The ECL qualification will be obtained as the sum of the qualification of the Reports / memories of practices on laboratory contents. Those students who can not follow the continuous assessment and who have been granted the rejection of the continuous assessment will have the possibility of taking a final written test to obtain a REC grade that will weigh 40% of the final grade and will include both the contents of the laboratory practices (weight of 20%, which we will call RECL rating) as classroom (weight of 20%, which we will call RECA rating). The remaining 60% of the final grade will be obtained by completing a final exam that will consist of two parts: a theoretical part (which we will call T) that will weigh 20% of the final grade and another part of problem solving (which we will call P) that will have a weight of 40% of the final grade. The theoretical part will consist of a theoretical-practical test (objective questions and / or development questions). Those students who do not appear for the final exam will obtain a grade of not presented. Both the final exams and those that are held on dates and / or times different from those officially set by the center, may have an exam format different from the one previously described, although the parts of the exam retain the same value in the final grade. Final grade G of the subject for the continuous assessment modality: $$G = ECL + ECA + T + P$$ Final grade G of the subject for the evaluation modality at the end of the semester and July (the RECL and RECA options only for students with waiver granted): G = ECL (or RECL) + ECA (or RECA) + T + P. To pass the subject, it is a necessary and sufficient condition to have obtained a final grade G greater than or equal to 5. Ethical commitment: The student is expected to exhibit adequate ethical behavior. In the case of detecting unethical behavior (copying, plagiarism, unauthorized use of electronic devices, etc.), the student will be considered not to meet the necessary requirements to pass the subject. In this case, the overall grade in the current academic year will be suspended (0.0). The use of any electronic device during the evaluation tests will not be allowed unless expressly authorized. The fact of introducing an electronic device not authorized in the exam room will be considered a reason for not passing the subject in this academic year and the overall rating will be suspended (0,0). ## Sources of information ## **Basic Bibliography** 1. Young H.D., Freedman R.A., **Física Universitaria**, **V1**, 13ª Ed., Pearson, #### **Complementary Bibliography** - 2. Tipler P., Mosca G., **Física para la ciencia y la tecnología, V1**, 5ª Ed., Reverté, - 3. Serway R. A., **Física para ciencias e ingeniería, V1**, 7º Ed., Thomson, - 4. Juana Sardón, José María de, **Física general, V1**, 2ª Ed., Pearson Prentice-Hall, - 5. Bronshtein, I. Semendiaev, K., Handbook of Mathematics, 5ª Ed., Springer Berlín, - 6. Jou Mirabent, D., Pérez García, C., Llebot Rabagliati, J.E., **Física para ciencias de la vida**, 2ª Ed., McGraw Hill Interamericana de España S.L., - 7. Cussó Pérez, F., López Martínez, C., Villar Lázaro, R., **Fundamentos Físicos de los Procesos Biológicos**, 1ª Ed, ECU, 8. Cussó Pérez, F., López Martínez, C., Villar Lázaro, R., **Fundamentos Físicos de los Procesos Biológicos, Volumen II**, 1ª Ed, ECU, - 9. Villar Lázaro R., López Martínez, C., Cussó Pérez, F., **Fundamentos Físicos de los Procesos Biológicos, Volumen III**, 1ª Ed, ECU, - 10en. Villars, F., Benedek, G.b., **Physics with Illustrative Examples from Medicine and Biology**, 2ª Ed., AIP Press/Springer-Verlag, ## Recommendations #### **Other comments** Recommendations: - 1. Basic knowledge acquired in the subjects of Physics and Mathematics in previous courses. - 2. Capacity for written and oral comprehension. - 3. Abstraction capacity, basic calculation and synthesis of information. - 4. Skills for group work and group communication. In case of discrepancy between versions, the Spanish version of this guide will prevail. ## **Contingency plan** ## **Description** === EXCEPTIONAL PLANNING === Given the uncertain and unpredictable evolution of the health alert caused by COVID-19, the University of Vigo establishes an extraordinary planning that will be activated when the administrations and the institution itself determine it, considering safety, health and responsibility criteria both in distance and blended learning. These already planned measures guarantee, at the required time, the development of teaching in a more agile and effective way, as it is known in advance (or well in advance) by the students and teachers through the standardized tool. - === ADAPTATION OF THE METHODOLOGIES === - * Teaching methodologies maintained - * Teaching methodologies modified All methodologies (master class, problem solving and laboratory practices): in the mixed modality, the teaching activity will be carried out combining face-to-face and non-face-to-face teaching using Remote Campus, also using the FAITIC teleteaching platform as reinforcement. In the non-classroom modality, the teaching activity will be carried out through the Remote Campus, also using the FAITIC teleteaching platform as reinforcement. All this without prejudice to being able to use complementary measures that guarantee the accessibility of the students to the educational contents. Laboratory practices. In the mixed modality, the experimental activities using lab equipment and data collection by the students will suffer limitations and will be largely replaced by demonstrations in the laboratory carried out by teaching staff, which will be witnessed by the students present in the laboratory and accessible to the rest of the students by telematic means. The data processing activities do not require the use of equipment and can be carried out outside the laboratory (in a classroom, at home, etc.) and may be carried out by both the students present in the laboratory and by those who follow the class electronically. In the non-face-to-face modality, the classes will be maintained, but they will be developed entirely by telematic means. The activities of equipment management and data collection by the students will be totally replaced by demonstrations carried out by teaching staff and / or specific audiovisual material. * Non-attendance mechanisms for student attention (tutoring) The tutorials may be carried out either in person (as long as it is possible to guarantee sanitary guidelines) or telematically, either asynchronously (email, FAITIC forums, etc.) or by videoconference, in this case by appointment. - * Modifications (if applicable) of the contents - * Additional bibliography to facilitate self-learning - * Other modifications === ADAPTATION OF THE TESTS === * Tests already carried out • • * Pending tests that are maintained Final exam, part P 40%, maintains weight Final exam, part T 20%, maintains weight #### * Tests that are modified ECA 20%, types of tests: comprises an exam of objective questions, exam of development questions => ECA 20%, types of tests: comprises an exam of objective questions, exam of development questions, problem solving and / or exercises . ECL 20%, types of tests: comprises examination of development questions, practice report 10% => ECL, weight 20%, types of tests: comprises exam of development questions, problem solving and / or exercises, report of practices 10%. - * New tests - * Additional Information