Universida_{de}Vigo

Subject Guide 2021 / 2022

1111				- PKAKKANAT			XIIII
IDENTI	FYING DA	ΤΑ					
Machin	e design	and testing					
Subject	Mac	chine design					
Codo	anu	C363V01602					
Study	Gra	do en					
program	nme Inge	eniería en					
1	Tec	nologías					
	Indu	ustriales					
Descrip	tors ECT	S Credits		Choose	Year	Quad	mester
	6			Mandatory	3rd	2nd	
Teachin	g Spa	nish					
languag	e Gali	ician Liab					
Donartr	Eng	lish					
Coordin	ator						
	alui	ade Robleda Abraham					
E-mail	is Jey						
Web	httr	://moovi.uvigo.gal/					
General	This	s subject is intended to allow the st	udents to apply	v the fundamenta	ls of Mechanisr	n and Machin	es Theory to
descript	ion the	design of machines as well as the	necessary know	wledge, comprehe	ension, and app	lication of the	ese concepts
	con	cerning to the field of Mechanical e	engineering.	5			·
	lt al	so provides the students with the r	nost important	concepts related	to the design of	of machines.	The students
	will	know and apply analysis methods	for the design	of machines by ap	plying analytic	al methods o	r/and
	thro	ough the effective use of simulation	n software.				
Skills							
Code							<u> </u>
B3 CG	3 Knowled	dge in basic and technological subj	ects that will e	nable them to lea	rn new method	s and theorie	s, and equip
		ersatility to adapt to new situations		croativity critical	thinking and t		to and
B4 CC	4 ADIIILY L	wledge skills and abilities in the fi	eld of Industria	Lealivily, childa	i thinking and t	o communica	te and
B5 CG	5 Knowler	due to carry out measurements ca	culations ass	essments annrais	als surveys st	udies report	s work plans
an	d other sir	nilar works		cosmento, appiaio	uis, suiveys, se	uules, report.	
B6 CC	6 Capacit	y for handling specifications, regula	ations and mar	ndatory standards			
B11 CC	11 Knowle	edge, understanding and ability to	apply the legis	lation relating to i	ndustrial instal	lations.	
C13 CE	13 Knowle	edge of the principles of the theory	of machines a	nd mechanisms.			
C26 CE	26 Knowle	edge and abilities to calculate, desi	gn and test ma	achines.			
D2 CT	2 Problem	s resolution.					
D9 CT	9 Apply kr	nowledge.					
D16 CT	16 Critica	l thinking.					
D20 CT	20 Ability	to communicate with people not ex	xpert in the fie	ld.			
Leensi							
Export	ig outcol	from this subject				Training and	Learning
Expecte		nom this subject				Resul	ts
Knowle	dge of calo	culation methods applied in Mechai	nical design.		B3	C13	D2
					B4	C26	D9
					B5		D16
Knowle	dge and d	esign capabilities applied in mecha	nical power tra	insmissions.	B6	C13	D2
						C26	D9
							D16

D20

Knowledge of the fundamental laws applied in the study of machine elements.	B11	C13 C26	D2 D9 D16 D20
Calculation capabilities and analysis applied for different machine components.	B3 B11	C13 C26	D2 D9 D16

Contents					
Торіс					
Mechanical design	1. Design vs. static	י vs. static loads			
	Design vs. dynan	nic loads			
Power Transmissions	3. Introduction to p	ower transmission systems			
4. Gears (spur, bevel, and worm gears)					
	5. Axles and shafts				
Machine elements	6. Clutches and bra	kes			
	Bolted joints and	power screws			
	8. Plain and ball bea	arings			
		-			
Planning					
	Class hours	Hours outside the classroom	Total hours		
Lecturing	23	19.5	42 5		

Lecturing	23	19.5	42.5
Problem solving	9	30	39
Laboratory practical	18	47	65
Objective questions exam	3.5	0	3.5
*The information in the planning table is	for guidance only and does	s not take into account	the heterogeneity of the students.

Methodologies	
	Description
Lecturing	Lectures about the topics of the subject
Problem solving	Discussion of exercises

Laboratory practical Practical sessions including specific material and software tools.		
Personalized assis	tance	
Methodologies	Description	
Lecturing	Group or individual tutorial sessions will be held during office hours to strengthen the acquired knowledge and to guide and assess the proposed works/papers	
Problem solving	Group or individual tutorials will be held during office hours to strengthen the acquired knowledge and to guide and assess the proposed works/papers.	
Laboratory practical	Group or individual tutorials will be held during office hours to strengthen the acquired knowledge and to guide and assess the proposed works/papers.	

Assessment					
	Description	Qualification	TI	raining	and
			Lea	rning F	lesults
Laboratory	Attendance and participation as well as practices reports, papers, and	20		C13	D2
practical	tests will be rated. However, to be evaluated, students must attend a			C26	D9
	minimum of 7 practice sessions; otherwise, students won[]t be				D16
	evaluated and will get 0 points.				D20
	Learning outcomes: all will be graded				
Objective	Final and mid-term tests will be focused on the contents taught at	80	B3	C13	D2
questions exam	classes and laboratory sessions.		B4	C26	D9
	Learning outcomes: all will be graded		B5		D16
			B6		
			B11		

Other comments on the Evaluation

Students must achieve 5 points (*) or higher grade to pass the subject, following these rules:

• Laboratory Practical.

- Students are required to attend and utilized the laboratory/Computer room. Practices reports, papers, and tests for each practice session as well as proposed works/papers from tutorials will be evaluated and graded with a maximum of 2 points. This grade will be kept for the second term in the student[]s evaluation records (July). To be evaluated, students must attend a minimum of 7 practice sessions; otherwise, students won[]t be evaluated and will get 0 points.
- For those students who have been officially granted the right to waive their continued evaluation, there will be a mandatory final test where they will be able to get a maximum grade of 2 points. However, an advanced request must be made to the professor to prepare the necessary materials for this test.
- Objective question exam. It will be graded in a test that have a minimum grade of 8 points.

(*) Grades are calculated using a system of numerical qualification from 0 to 10 points conforming to the Spanish current legislation (RD 1125/2003, 5 September; BOE 18 September).Ethical commitment: An adequate ethical behaviour of the student is expected at all times. In case an unethical behaviour is detected (copying, plagiarism, unauthorized use of electronic devices, and others); the student will be considered unfit to meet the necessary requirements to pass the subject. In this case, the overall qualification in the current academic year will be a Fail grade (0.0).

The use of any electronic devices during tests is completely forbidden unless is specified and authorized. The fact of introducing unauthorized electronic devices in the examination room will be considered reason enough to fail the subject in the current academic year and the overall qualification will be a Fail grade (0.0).

Sources of information
Basic Bibliography
Norton, R., Machine Design. An Integrated Approach, Pearson, 2012
Shigley, J.E, Mechanical Engineering Design , 9ª edición, Mc Graw Hill, 2012
Norton, R., Diseño de Máquinas. Un Enfoque Integrado, Pearson, 2012
Shigley, J.E, Diseño de en Ingeniería Mecánica , 9ª edición, Mc Graw Hill, 2012
Complementary Bibliography
Mott, Robert L., Machine Elements in Mechanical Design, Pearson, 2006
Lombard, M, Solidworks 2013 Bible, Wiley, 2013
Hamrock, Bernard J, et al., Fundamental Machine Elements, Mc Graw Hill, 2000
Mott, Robert L., Diseño de elementos de máquinas, Pearson, 2006
Hamrock, Bernard J, et al., Elementos de Máquinas, Mc Graw Hill, 2000

Recommendations

Subjects that it is recommended to have taken before

Materials science and technology/V12G360V01301 Mechanics of materials/V12G360V01404 Mechanism and machine theory/V12G360V01303

Contingency plan

Description

=== EXCEPTIONAL PLANNING ===

Given the uncertain and unpredictable evolution of the health alert caused by COVID-19, the University of Vigo establishes an extraordinary planning that will be activated when the administrations and the institution itself determine it, considering safety, health and responsibility criteria both in distance and blended learning. These already planned measures guarantee, at the required time, the development of teaching in a more agile and effective way, as it is known in advance (or well in advance) by the students and teachers through the standardized tool.

In the event that attendance to classes become legally entirely or partially limited, the measures set on place will be:

1. To guarantee the necessary means, namely personal computer or internet access, to every enrolled student so they can follow the distance learning classes, appropriately. Therefore, to apply the appropriate solutions, any student who does not have any of these means should inform the course coordinator.

2. To inform students of the different measures adopted, the department will use the platform, Faitic.

3. On top of that, in the case of cancelation of face-to-face classes, the teaching guide will show the next modifications:

- A. Competences. They will not be modified.
- B. Learning outcomes. They will not be modified.

C. Contents. They will not be modified.

D. Planning. It will not be modified.

E. Methodology. It will be modified:

Lecturing and Problem solving. They will require the employment of electronic means (virtual classroom of the Remote Campus or others).

Laboratory Practices. The department will provide every student access to CAD and FEM software, so that they can carry out the practices remotely instead of from the Mechanical Engineering laboratory. The professor will supervise these practices using electronic means (virtual classroom of the Remote Campus or others).

F. Tutoring Lessons. They will be carried out by previously arranged electronic means (e-mail, faitic forums or virtual classroom at campus remote, []).

G. Assessment. Assessment methodologies/test will not be modified: Laboratory practical and Essay questions exam. Description, qualification, and competences, they will not be modified. All exams will use electronic means (virtual classroom of the Remote Campus or others); the department will publish in advance the specific rules for each test in the platform, Faitic. According to attendance at the virtual practice sessions, the professor will compute and validate each practice attendance on virtual classroom of the Remote Campus.

Partial tests for the evaluation of specific contests of the subject can be proposed. Once again, the professor will publish in advance the rules concerning each test in the platform, Faitic.

H. Bibliography. Besides the bibliographical references found in this guide, the documentation provided at Faitic, and the problem bulletins and previous exams, the professor might facilitate additional notes, videos, web-references, and others, so that students can appropriately follow the course during the non-face-to-face classes.

This guide can be modified following Rectoral rules.