UniversidadeVigo

Subject Guide 2020 / 2021

11111111				
IDENTIFYIN				
Space Vehi				
Subject	Space Vehicles			
Code	007G410V01933			
Study	Grado en			
programme	Ingeniería Aeroespacial			
Descriptors	ECTS Credits	Choose	Year	Quadmester
	6	Optional	3rd	2nd
Teaching	#EnglishFriendly			
language	Spanish			
	Galician			
Department				
Coordinator	Ulloa Sande, Carlos			
Lecturers	Ulloa Sande, Carlos			
E-mail	carlos.ulloa@uvigo.es			
Web	http://aero.uvigo.es			
General	The space vehicles operate in a very different e		earth. This enviro	onment is critical when
description	defining the design requirements of the space with addition to the space environment, it is under		iact the study of	the necessary concents
	of orbital mechanics for the understanding of th			
	space vehicles.			
	Main subsystems of a space vehicle are studied	, as well, with special	attention to the	subsystem of thermal
	control and the subsystem of attitude control.			
	Labs are included using specific material and sin			
	English Friendly subject: International students			
	references in English, b) tutoring sessions in En	glish, c) exams and as	sessments in En	glish.
Competenc	ies			
Code				
	e students know how to apply their knowledge to			
	the competences that are usually demonstrated on of problems within their area of study	through the elaborat	ion and defense	of arguments and the
	e students have the capability to gather and inter	prot rolovant data (ur	ually within thei	r area of study) to issue
	nts that include a reflection on relevant social, so			i alea ol study) to issue
	e students develop those learning capabilities ne			ith a high degree of
autonor				tar a high degree of
	iity for design, development and management in	the field of aeronaution	cal engineering (in according with what is
	hed in section 5 of order CIN / 308/2009), aerosp			
materia	lls , airport infrastructures, air navigation infrastru	uctures and space ma	nagement, air tra	affic and transport
	ement systems.			
	ity to participate in flight testing programs for tal	ce-off and landing dist	ances, ascent sp	eeds, loss speeds,
	verability and landing capacities.			
	riate knowledge applied to engineering: systems	of aircrafts and autom	natic systems of	flight control of the
	ace vehicles.			
	ity of oral and written communication in native le			
	ity of autonomous learning and information mana	igement		
	iity for interpersonal communication	acts within the second	of the studies	
	notivation for quality with sensitivity towards subj ability and environmental commitment. Equitable			urcoc
Sustain	ability and environmental commitment. Equitable	e, responsible and emo	Lient use of reso	uices
Learning ou				Technica
Expected res	sults from this subject			Training and Learning Results

Training and Learning Results

- Knowledge, understanding, application and analysis of the basic configurations, subsystems and missions of the space vehicles	A2 A3 A5	B1 B6	C24	D3 D4 D6 D11 D13
- Capacity for the analysis of the mission, of the type of law of guided and space path	A2 A3 A5	B1 B6	C24	D3 D4 D6 D11 D13
- Knowledge, understanding, application and analysis of the thermal control of the space vehicle	A2 A3 A5	B1 B6	C24	D3 D4 D6 D11 D13
- Knowledge, understanding, application and analysis of control of attitude and orbit of the space vehicle	A2 A3 A5	B1 B6	C24	D3 D4 D6 D11 D13
- Knowledge and understanding of the system of essays and of the support of earth of the space vehicle	A2 A3 A5	B1 B6	C24	D3 D4 D6 D11 D13

Contents	
Торіс	
BLOCK 1: Introduction	Lesson 1.1: Brief historical review.
	Lesson 1.2: Classification of space vehicles
	Lesson 1.3: Types of subsystems of space vehicles
	Lesson 1.4: The solar system.
	Lesson 1.5: The space and planetary surroundings.
BLOCK 2: Orbital Mechanics	Lesson 2.1: Systems of reference and time.
	Lesson 2.2: The two-body problem. Time laws and orbital elements.
	Lesson 2.3: Tracks, coverage and visibility
	Lesson 2.4: Perturbations
	Lesson 2.5: Types of orbits
	Lesson 2.6: The three-body problem
BLOCK 3: Analysis of mission	Lesson 3.1: Space maneuvers
	Lesson 3.2: Rendezvous
	Lesson 3.3: Lunar and interplanetary missions
BLOCK 4: Subsystems	Lesson 4.1: Propulsion systems and launch vehicles
	Lesson 4.2: Space vehicles structures
	Lesson 4.3: System of attitude control
	Lesson 4.4: System of thermal control
	Lesson 4.5: Electrical , communications, commando and telemetry
	systems
	Lesson 4.6: Ground segment
	Lesson 4.7: Laboratory tests

	Class hours	Hours outside the classroom	Total hours
Lecturing	28	0	28
Laboratory practical	12	0	12
Seminars	0	2	2
Previous studies	0	79.5	79.5
Objective questions exam	2.5	0	2.5
Report of practices, practicum and exte	rnal practices 0	6	6
Essay	10	10	20
*The information in the planning table is	for guidance only and does no	t take into account the het	erogeneity of the students

Methodologies

	Description	
Lecturing	Classroom lecture	

Laboratory practical	Practicum with different subsystems of space vehicles Practicum of simulation of analysis of mission Essays and reports about space vehicles
Seminars	Tutorials in small groups
Previous studies	Autonomous work

Personalized assistance				
Methodologies Description				
Seminars	Small group tutoring with the teachers of the subject. The tutorials will be held, preferably, by appointment, in the teacher's virtual office, on the Remote Campus.			

	Description	Qualification		Training	g and L Results	-
Objective questions exam	Partial examination of short questions and problems (20%) (Percentage can be divided into shorter tests)		A2 A3 A5	B1 B6	C24	D3 D4 D11
	Final examination of short questions and problems (50%)		AJ			D11
Report of practices, practicum and external practices	Report of the laboratory practices		A2 A3 A5	B6	C24	D3 D4 D6 D11 D13
Essay	Reports and presentations of essays and assignment proposed along the course during the practicum sessions		A2 A3 A5	B6	C24	D3 D4 D6 D11 D13

Other comments on the Evaluation

The evaluation of the course at the first opportunity will be carried out by Ongoing Assessment. Students who have a justification may officially waive the ongoing assessment and ask for a first oportunity final exam, on the official date. The grade obtained in this exam will represent 100% of the final grade. This exam may have a part to do in a computer room and / or laboratory. The waiver of ongoing assessment must be made during the first month of class. During this period, the justification of the resignation will be presented to the coordinator of the subject for evaluation.

To pass the course at the first opportunity, a score greater than 5 points out of 10 will be required in the continuous evaluation during the development of classes and the exam on the official date, toghether. The final grade will be obtained according to the indicated percentages.

Ongoing assessment is not passed in the following cases:

- The non-execution or delivery, without justification, of any of the items of the ongoing assessment (works reports, practicum reports, exams ...). In this case, the final grade reflected in the official record will be "not presented"

- Obtaining a grade of less than 5 points out of 10 in the final exam of ongoing assessment. In this case, the final grade reflected in the official record will be the grade of the ongoing assessment final exam.

The evaluation of the course in the second opportunity will be carried out in a final exam on the date set by the center. The grade obtained in this exam will represent 100% of the final grade. This exam may have a part to do in a computer room and / or laboratory.

To pass the subject in the second opportunity, a score higher than 5 points out of 10 will be required in the exam on the official date.

The evaluation test schedule officially approved by the EEAE Center Board is published on the website http://aero.uvigo.es/gl/docencia/exames

The maximum length of the exams will be 3 hours if there is no interruption, and 5 hours if there is an intermediate break (maximum 3 hours for each part).

Sources of information	
Basic Bibliography	

H.D. Curtis, **Orbital Mechanics for Engineering Students**, ELSEVIER, 2014 P. Fortescue, **Spacecraft Systems Engineering**, 4, Wiley, 2011 M.D. Griffin y J.R. French, **Space Vehicle Design**, AIAA Education Series, 2004 Charles Brown, **Elements of Spacecraft design**, AIAA Education Series, 2002 **Complementary Bibliography** Bong Wie, **Space vehicle Dynamics and Control.**, AIAA Education Series, 1998 R. Karam, **Satellite Thermal Control for Systems Engineers**, AIAA Education Series, 1998

Recommendations

Subjects that it is recommended to have taken before

Physics: Physics I/007G410V01103 Physics: Physics II/007G410V01202 Aerospace technology/007G410V01205 Classical mechanics/007G410V01305

Contingency plan

Description

=== EXCEPTIONAL PLANNING ===

Given the uncertain and unpredictable evolution of the health alert caused by COVID-19, the University of Vigo establishes an extraordinary planning that will be activated when the administrations and the institution itself determine it, considering safety, health and responsibility criteria both in distance and blended learning. These already planned measures guarantee, at the required time, the development of teaching in a more agile and effective way, as it is known in advance (or well in advance) by the students and teachers through the standardized tool.

=== ADAPTATION OF THE METHODOLOGIES ===

* Teaching methodologies maintained

The proposed methodologies are maintained but carried out through the Remote Campus. The platform faitic will be used more intensively as reinforcement to ensure accessibility of the students to the contents of the subject.

* Teaching methodologies modified

Laboratory practices that require interaction with physical elements are replaced by other activities that can be carried out on the remote campus, such as work in groups.

* Contactless mechanism for student attention (tutorials) The tutorials will place in the teacher's virtual office on the remote campus.

=== ADAPTATION OF THE EVALUATION === * Tests already carried out The tests already carried out maintain their weight in the evaluation.

* Pending tests

Pending tests are planned and will be carried out using the Moodle platform and the remote campus, and they maintain their weight in the evaluation.