Universida_{de}Vigo

Subject Guide 2020 / 2021

IDENTIFYIN	<u> </u>			
	d orbital mechanics			
Subject	Analytic and			
-	orbital mechanics			
Code	007G410V01943			
Study	Grado en			
programme	Ingeniería			
	Aeroespacial			
Descriptors	ECTS Credits	Choose	Year	Quadmester
	6	Optional	3rd	<u>2nd</u>
Teaching	#EnglishFriendly			
language	Spanish			
Department				
Coordinator	Tommasini , Daniele			
Lecturers	Tommasini , Daniele			
E-mail	daniele@uvigo.es			
Web	http://faitic.uvigo.es/			
General description	We will study the methods of Lagrangian and Hamilto to the orbital mechanics of space vehicles. English Friendly subject: International students may rappear a) materials and bibliographic references in English, b) tutoring sessions in English, c) exams and assessments in English.			apply them in particular

Competencies

Code

- A2 That the students know how to apply their knowledge to their work or vocation in a professional way and that they possess the competences that are usually demonstrated through the elaboration and defense of arguments and the resolution of problems within their area of study
- A3 That the students have the capability to gather and interpret relevant data (usually within their area of study) to issue judgments that include a reflection on relevant social, scientific or ethical issues
- A5 That the students develop those learning capabilities necessary to undertake further studies with a high degree of autonomy.
- B6 Capability to participate in flight testing programs for take-off and landing distances, ascent speeds, loss speeds, maneuverability and landing capacities.
- C24 Appropriate knowledge applied to engineering: systems of aircrafts and automatic systems of flight control of the aerospace vehicles.
- C26 Applied knowledge of aerodynamics; mechanics and thermodynamics, flight mechanics, aircraft engineering (fixed and rotary wings), theory of structures.
- C33 Applied knowledge of aerodynamics, flight mechanics, air defense engineering (ballistics, missiles and air systems), space propulsion, material science and technology, structure theory.
- D3 Capability of oral and written communication in native lenguage
- D4 Capability of autonomous learning and information management
- D5 Capability to solve problems and draw decisions
- D6 Capabiliity for interpersonal communication
- D8 Capabiliity for critical and self-critical reasoning
- D11 Show motivation for quality with sensitivity towards subjects within the scope of the studies

Learning outcomes	
Expected results from this subject	Training and Learning
	Results

Knowledge, understanding, application, analysis and synthesis of methods and techniques of Analytical Mechanics; specifically, of Lagrange and Hamilton-Jacobi equations, canonical transformations, and equilibrium, stability and oscillations of dynamical systems with N degrees of freedom.	A2 A3 A5	В6	C24 C26 C33	D3 D4 D5 D6 D8 D11
Knowledge, understanding, application, analysis and synthesis of the problems astrodinámicos related with the movement of the centre of masses of a spatial	A2 A3	В6	C24 C26	D3 D4
vehicle; in concrete, the orbits keplerianas, the real orbits conditioned by the different	A5		C33	D5
perturbacións orbitales, the orbits osculatrices and the numerical methods usual in Astrodinámica				D6
				D8
				D11
Knowledge and understanding of the dynamics of attitude of the space vehicles	A2	В6	C24	D3
	А3		C26	D4
	Α5		C33	D5
				D6
				D8
				D11

Contents	
Topic	
Analytical Mechanics	Introduction to Lagrangian Mechanics
	Introduction to Hamiltonian Mechanics
	Dynamical systems: examples; linearisation; Lyapunov stability; numerical
	integration
Orbital Mechanics	Kepler Movement
	Perturbative Forces: modeling; numerical methods for orbit determination
	and orbital elements computations
	Attitude Dynamics

Planning			
	Class hours	Hours outside the classroom	Total hours
Problem solving	12	18	30
Practices through ICT	12	18	30
Lecturing	26	39	65
Essay questions exam	2.5	0	2.5
Report of practices, practicum and ext	ternal practices 0	22.5	22.5

^{*}The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies	
	Description
Problem solving	Solution of problems with the active participation of the students
Practices through ICT	The teacher will explain the theory
Lecturing	El docente expondrá la teoría en lecciones magistrales

Personalized assistance	
Methodologies	Description
Problem solving	The student will participate in the process of solving problems under the supervision of the teacher.
Practices through ICT	The student will take part in the resolution of numerical problems with the help of the teacher
Tests	Description
Report of practices, practicum and external practices	The student will take part in the elaboration of the practice reports of the practices with the help of the teacher

Assessment		
Description	Qualification	Training and Learning
		Results

Problem solving	Assistance and active participation in the classes of problem solving	5	A2 A3 A5	В6	C24 C26 C33	D3 D4 D5 D6 D8 D11
Practices through ICT	Assistance and active participation in the computer practices	5	A2 A3 A5	В6	C24 C26 C33	D3 D4 D5 D6 D8 D11
Essay questions exam	Exam	70	A2 A3 A5	В6	C24 C26 C33	D3 D4 D5 D6 D8 D11
Report of practices, practicum and external practices	Elaboration of a report describing the methodology and the results of the computer practices	20	A2 A3 A5	В6	C24 C26 C33	D3 D4 D5 D6 D8 D11

Other comments on the Evaluation

The students not following the continuous assessment will be evaluated only through the exam (100% in this case).

In second edition, there will be the opportunity to be evaluated only through the exam (100%) for the students who ask for it.

The dates of the final exams are published on the website of the EEAE in the web page http://aero.uvigo.es/gl/docencia/exames.

Sources of information

Basic Bibliography

H. Schaub, J. L. Junkins, Analytical Mechanics of Space Systems, AIAA Education Series, 2009

Howard Curtis, Orbital Mechanics for Engeneering Students 3rd Edition, 3ª, Elsevier, 2014

Oliver Montenbruck; Eberhard Gill, **Satellite Orbits: Models, Methods and Applications**, Springer; HAR/CDR edition (September 2, 2011), 2011

J. E. Prussing, B. A. Conway, **Orbital Mechanics**, 2ª, Oxford University Press, 2012

A. E. Roy, Orbital Motion, Fourth Edition, 4ª, CRC Press,

William T. Thomson, Introduction to Space Dynamics, Dover Publications, 1985

D. A. Vallado, **Fundamentals of Astrodynamics and Applications**, Springer, 2007

Complementary Bibliography

D. Tommasini, Apuntes de la asignatura,

R.R. Bate, D.D. Mueller, J.E. White, **Fundamentals of Astrodynamics (Dover Books on Aeronautical Engineering) Revised ed. Edition**,

P.C. Hughes, **Spacecraft Attitude Dynamics**, Dover Publications, 2004

Recommendations

Subjects that it is recommended to have taken before

Physics: Physics I/007G410V01103 Computer science/007G410V01104

Mathematics: Linear algebra/007G410V01102
Mathematics: Calculus I/007G410V01101
Mathematics: Calculus II/007G410V01201

Mathematics: Mathematical methods/007G410V01301

Classical mechanics/007G410V01305 Numerical calculation/007G410V01941

Contingency plan

Description

=== EXCEPTIONAL PLANNING ===

Given the uncertain and unpredictable evolution of the health alert caused by COVID-19, the University of Vigo establishes an extraordinary planning that will be activated when the administrations and the institution itself determine it, considering safety, health and responsibility criteria both in distance and blended learning. These already planned measures guarantee, at the required time, the development of teaching in a more agile and effective way, as it is known in advance (or well in advance) by the students and teachers through the standardized tool.

=== ADAPTATION OF THE METHODOLOGIES ===

* Teaching methodologies maintained

In the event that they cannot be given face-to-face, the master classes and problem solving classes will be taught by "Campus remoto" or by Microsoft Teams. These means, along with email, will also be used for interaction with students for the numerical practice exercises.

- * Teaching methodologies modified See above.
- * Non-attendance mechanisms for student attention (tutoring)

The tutorials, in the case that they have to be non-face-to-face, will be held by email, by "Campus Remoto", or by Microsoft Teams, subject to prior agreement with the students.

- * Modifications (if applicable) of the contents
- * Additional bibliography to facilitate self-learning
- * Other modifications

=== ADAPTATION OF THE TESTS ===

* Tests that are maintained

The continuous evaluation of the active participation in the classes and in the practices [total weight 10%] and of the memories of numerical practices [total weight 20%] will be maintained.

* Tests that are modified

In the case of not being allowed to do it face-to-face, the written exam will be done by email in a limited time (each student will have a different text) and will weigh 30%

* New tests

In the case of not being allowed to have face-to-face written exams, there will be an oral exam that will consist of two parts:

- 1. Individual oral presentation by videoconference of the report of the numerical calculation practices [weight 10%];
- 2. Individual presentation in videoconference with support in powerpoint, pdf, or another similar method of an individual work on an aspect of Orbital Mechanics (with the possibility of questions) [weight 30%]