Universida_{de}Vigo Subject Guide 2019 / 2020 | IDENTIFYIN
Materials so | G DATA
cience and technology | | | | | |----------------------------|-------------------------------------|----------------------|-----------------------|----------------|------------------| | Subject | Materials science
and technology | | | | | | Code | V12G363V01301 | | | | | | Study | Degree in | | | | | | programme | Industrial | | | | | | | Technologies | | | | | | | Engineering | | | | | | Descriptors | ECTS Credits | | Choose | Year | Quadmester | | | 6 | | Mandatory | 2nd | 1st | | Teaching | Spanish | | , | | | | language | Galician | | | | | | Department | | | | | | | Coordinator | Pena Uris, Gloria María | | | | | | Lecturers | Díaz Fernández, Belén | | | | | | | Pena Uris, Gloria María | | | | | | E-mail | gpena@uvigo.es | | | | | | Web | http://faitic.uvigo.es | | | | | | General | The aim of this subject is to ir | ntroduce the main co | ncepts of materials t | echnology as w | vell as to study | | description | applications of the most com | | | | - | # Competencies ode - B3 CG3 Knowledge in basic and technological subjects that will enable them to learn new methods and theories, and equip them with versatility to adapt to new situations. - B4 CG4 Ability to solve problems with initiative, decision making, creativity, critical thinking and to communicate and transmit knowledge, skills and abilities in the field of Industrial Engineering. - B6 CG6 Capacity for handling specifications, regulations and mandatory standards. - C9 CE9 Knowledge of the fundamentals of the science, technology and chemistry of materials. Understand the relationship between microstructure, the synthesis, processing and properties of materials. - D1 CT1 Analysis and synthesis. - D5 CT5 Information Management. - D9 CT9 Apply knowledge. - D10 CT10 Self learning and work. | Learning outcomes | | | | | | |---|----------|----|----------------------------------|--|--| | Expected results from this subject | | | Training and Learning
Results | | | | It comprises the fundamental concepts of link, structure and microstructure of the distinct types of materials | f B3 | C9 | D10 | | | | It comprises the influence of the microstructure of the material on its mechanical , electrical, thermal and magnetic behaviour | В3 | C9 | | | | | It comprises the mechanical behaviour of the metallic, ceramic, plastics and composite materials. | B4
B6 | | | | | | It knows how to modify the material properties by means of mechanical processes and thermal treatments | B4 | C9 | D9 | | | | It knows the basic structural characterisation techniques for materials. | B3
B6 | C9 | | | | | To acquire skills in the handle of the diagrams and charts | | | D1 | | | | To acquire skills in the realisation of tests | В6 | C9 | D10 | | | | It analyses the results obtained and extracts conclusions from them | | | D1 | | | | | | | D5 | | | | | | | D9 | | | | Contents | | |--|--| | Topic | | | Introduction | Introduction to the Science and Technology of Material. Classification of the materials. Terminology. Orientations for the follow-up of the matter. | | Crystalline arrangement. | Crystalline and amorphous solids. Crystalline lattices, characteristics and imperfections. Allotropic transformations. | | Properties of materials. Laboratory practices. | Mechanical, chemical, thermal, electric and magnetic properties. Standars for materials analysis. Compressive and tensile deformation. Principles of fracture mechanisms. Toughness. Hardness. Main test methods. Fundamentals of thermal analysis. Fundamentals of non-destructive esting. Introduction to metallography. Binary isomorphous and eutectic systems. Microstructure in eutectic alloys. Analyses of practical situations. | | Metallic materials. | Solidification. Constitution of alloys. Grain size. Main binary phase diagrams. Processing. Carbon steels: classification and applications. Cast iron alloys. Heat treatments: ims, fundamentals and classification. Annealing, normalizing, quenching and tempering. Nonferreous alloys. | | Polymers and composites | General concepts. Classification. Properties. Types of polymers. Processing. Classification of composite materials. Polymer matrix composite materials. Processing of composite materials. Problems related to polymeric and composite materials. | | Ceramic materials | Structure and bonding in ceramic materials. Silicates structure. Glasses. Properties of ceramic materials. Processing of ceramic materials. Applications. | | Planning | | | | |---------------------------------|-------------|-----------------------------|-------------| | | Class hours | Hours outside the classroom | Total hours | | Introductory activities | 1.5 | 0 | 1.5 | | Lecturing | 31 | 55.8 | 86.8 | | Laboratory practical | 18 | 18 | 36 | | Autonomous problem solving | 0 | 12 | 12 | | Objective questions exam | 0.5 | 0.5 | 1 | | Problem and/or exercise solving | 1 | 0.95 | 1.95 | | Problem and/or exercise solving | 1.25 | 1.5 | 2.75 | | Essay | 0.5 | 7.5 | 8 | ^{*}The information in the planning table is for guidance only and does not take into account the heterogeneity of the students. | Methodologies | | |----------------------------|--| | | Description | | Introductory activities | Presentation of the subject. Introduction to materials science and technology. | | Lecturing | Exhibition by the lecturers of the main contents of the subject, theoretical bases and/or projects guidelines. Hands on science methodology. | | Laboratory practical | Practical application of the theoretical contents. Practical exercises in the materials laboatory. | | Autonomous problem solving | Formulation of a practical activity related to the subject. The student must be able to resolve them by himself. | | Methodologies | Description | |---------------------------------|-------------| | Lecturing | • | | Laboratory practical | | | Tests | Description | | Problem and/or exercise solving | | | Essay | | | Assessment | | | | | | |----------------------|---|---------------|----------|----|------------------| | | Description | Qualification | | | g and
Results | | Laboratory practical | Attendance, participation and periodical assignments. | 2 | B3
B6 | C9 | D1
D9
D10 | | Problem and/or exercise solving | In the final exam, short questions will be included. The final exam will be hold the day fixed by the school. | 40 | B3
B4
B6 | C9 | D1
D9
D10 | |---------------------------------|---|----|----------------|----|-----------------| | Problem and/or exercise solving | Exercises will be assessed along the course (25%). The final exam will include similar exercises (20%). | 50 | B3
B4
B6 | C9 | D1
D9
D10 | | Essay | The main guidelines to successfully develop short projects will be given. | 8 | B3
B4
B6 | C9 | D1
D9
D10 | #### Other comments on the Evaluation ## *Evaluaci�*n Continuous The *evaluaci�*ncontinua makeà during the period of *imparticiÃ�*n of the subject, *segÃ�*nlos criteria established in the previous section and corresponds with 30% of the final note. To surpass the subject beà necessary to have reached *unapuntuaciÃ�*n *mÃ�*nima of 40% in the proof made in the date previously *fijadapor the centre, that corresponds with 70% of the final note. Those students *queno receive to the *evaluaciÃ�*n continuous (previous *autorizaciÃ�*n of the *direcciÃ�*n *dela *EEI) beÃ*n evaluated with a final examination on the contents of *latotalidad of the matter, that *supondrà 100% of the note. ### Examination of Julio (2*� *Edici�*n) In the examination *deJulio *tendrà in account the *evaluaciÃ�*n continuous (VÃ*lida only in the course 2019-20). The examination *tendrà the same *caracterÃ�*sticasque the previous and makeà in the previously fixed date by the centre. Those students *quequieran renounce to the *evaluaciÃ�*n continuous beÃ*n evaluated with an examination *finalsobre the contents of the whole of the matter (*teorÃ�to + *prÃ*ctica) *quesupondrà 100% of the note. #### **Extraordinary examination** Examination on *loscontenidos of the whole of the matter (*teor�to + *prÃ*ctica) that *supondrà 100% of the note. #### **Commitment �*tico:** It expects that the present student a behaviour \tilde{A} *tico suitable. In *casode detect a behaviour no \tilde{A} *tico (copy, plagiarism, *utilizaci \tilde{A} *n of *aparatoselectr \tilde{A} *nicos unauthorised, etc.), consider \tilde{A} that the student no *re \tilde{A} *ne *losrequisitos necessary to surpass the matter. In this case, the *calificaci \tilde{A} *nglobal in the present course *acad \tilde{A} *mico be \tilde{A} of suspense (0.0). No allowà the *utilizaciÃ�*n of *ningÃ�*n device *electrÃ�*nico *durantelas proofs of *evaluaciÃ�*n, except *autorizaciÃ�*n expresses. The fact of *introducirun device *electrÃ�*nico unauthorised in the classroom of examination beà *consideradomotivo of no *superaciÃ�*n of the matter in the present course *acadÃ�*mico and *lacalificaciÃ�*n global beà of suspense (0.0). | Sources of information | | |---|--| | Basic Bibliography | | | Callister, William, Materials Science and Engineering: an introduction, Wiley, | | | Askeland, Donald R, The science and engineering of materials , Cengage Learning, | | | Shackelford, James F, Introduction to materials science for engineers, Prentice-Hall, | | | Complementary Bibliography | | | Smith, William F, Fundamentals of materials science and engineering, McGraw-Hill, | | | AENOR, Standard tests, | | | Montes I.M., Cuevas F.G., Cintas I., Ciencia e Ingeneiría de Materiales, Paraninfo. | | #### Recommendations Subjects that continue the syllabus Materials engineering/V12G380V01504 ## Subjects that are recommended to be taken simultaneously Fundamentals of manufacturing systems and technologies/V12G380V01305 Fluid mechanics/V12G380V01405 Thermodynamics and heat transfer/V12G380V01302 #### Subjects that it is recommended to have taken before Computer science: Computing for engineering/V12G350V01203 Physics: Physics I/V12G380V01102 Physics: Physics II/V12G380V01202 Mathematics: Algebra and statistics/V12G380V01103 Mathematics: Calculus I/V12G380V01104 Chemistry: Chemistry/V12G380V01205