Universida_{de}Vigo

Subject Guide 2019 / 2020

IDENTIFYIN	<u> </u>			
	cience and technology			
Subject	Materials science			
	and technology			
Code	V12G360V01301			
Study	Degree in			
programme	Industrial			
	Technologies			
	Engineering			
Descriptors	ECTS Credits	Choose	Year	Quadmester
	6	Mandatory	2nd	1st
Teaching	Spanish			
language	Galician			
Department				
Coordinator	Figueroa Martínez, Raúl			
	Abreu Fernández, Carmen María			
Lecturers	Abreu Fernández, Carmen María			
	Cortes Redin, María Begoña			
	Díaz Fernández, Belén			
	Figueroa Martínez, Raúl			
	Iglesias Rodríguez, Fernando			
	Pena Uris, Gloria María			
E-mail	cabreu@uvigo.es			
	raulfm@uvigo.es			
Web	http://faitic.uvigo.es			
General	The aim of this subject is to introduce the main conce	pts of materials te	chnology as well as	to study
description	applications of the most common materials			

Competencies

Code

- B3 CG3 Knowledge in basic and technological subjects that will enable them to learn new methods and theories, and equip them with versatility to adapt to new situations.
- B4 CG4 Ability to solve problems with initiative, decision making, creativity, critical thinking and to communicate and transmit knowledge, skills and abilities in the field of Industrial Engineering.
- B6 CG6 Capacity for handling specifications, regulations and mandatory standards.
- C9 CE9 Knowledge of the fundamentals of the science, technology and chemistry of materials. Understand the relationship between microstructure, the synthesis, processing and properties of materials.
- D1 CT1 Analysis and synthesis.
- D5 CT5 Information Management.
- D9 CT9 Apply knowledge.
- D10 CT10 Self learning and work.

Learning outcomes			
Expected results from this subject	Tra	aining an Res	d Learning ults
It comprises the fundamental concepts of link, structure and microstructure of the distinct types of materials	B3	C9	D10
It comprises the influence of the microstructure of the material on its mechanical , electrical, thermal and magnetic behaviour	В3	C9	
It comprises the mechanical behaviour of the metallic, ceramic, plastics and composite materials.	B4 B6	,	
It knows how to modify the material properties by means of mechanical processes and thermal treatments	B4	C9	D9
It knows the basic structural characterisation techniques for materials.	B3 B6	C9	
To acquire skills in the handle of the diagrams and charts			D1

To acquire skills in the realisation of tests	B6	C9	D10
It analyses the results obtained and extracts conclusions from them		D1	
			D5
			D9
It is able to apply norms of materials testing	B6		D1
			D9

Contents	
Topic	
Introduction	Introduction to the Science and Technology of Material. Classification of the materials. Terminology. Orientations for the follow-up of the matter.
Crystalline arrangement.	Crystalline and amorphous solids. Crystalline lattices, characteristics and imperfections. Allotropic transformations.
Properties of materials. Laboratory practices.	Mechanical, chemical, thermal, electric and magnetic properties. Standars for materials analysis. Compressive and tensile deformation. Principles of fracture mechanisms. Toughness. Hardness. Main test methods. Fundamentals of thermal analysis. Fundamentals of non-destructive esting. Introduction to metallography. Binary isomorphous and eutectic systems. Microstructure in eutectic alloys. Analyses of practical situations.
Metallic materials.	Solidification. Constitution of alloys. Grain size. Main binary phase diagrams. Processing. Carbon steels: classification and applications. Cast iron alloys. Heat treatments: ims, fundamentals and classification. Annealing, normalizing, quenching and tempering. Nonferreous alloys.
Polymers and composites	General concepts. Classification. Properties. Types of polymers. Processing. Classification of composite materials. Polymer matrix composite materials. Processing of composite materials. Problems related to polymeric and composite materials.
Ceramic materials	Structure and bonding in ceramic materials. Silicates structure. Glasses. Properties of ceramic materials. Processing of ceramic materials. Applications.

Planning			
	Class hours	Hours outside the classroom	Total hours
Introductory activities	1.5	0	1.5
Lecturing	31	55.8	86.8
Laboratory practical	18	18	36
Autonomous problem solving	0	12	12
Objective questions exam	0.5	0.5	1
Problem and/or exercise solving	1	0.95	1.95
Problem and/or exercise solving	1.25	1.5	2.75
Essay	0.5	7.5	8

^{*}The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies	
	Description
Introductory activities	Presentation of the subject. Introduction to materials science and technology.
Lecturing	Exhibition by the lecturers of the main contents of the subject, theoretical bases and/or projects
	guidelines. Hands on science methodology.
Laboratory practical	Practical application of the theoretical contents. Practical exercises in the materials laboratory.
Autonomous problem solving	Formulation of a practical activity related to the subject. The student must be able to resolve them by himself.

Personalized assistance	
Methodologies	Description
Lecturing	·
Laboratory practical	
Tests	Description
Problem and/or exercise solving	
Essay	

Assessment

	Description	Qualification		Training and Learning Results	
Laboratory practical	Attendance, participation and periodical assignments.	2	B3 B6	C9	D1 D9 D10
Problem and/or exercise solving	In the final exam, short questions will be included. The final exam will be hold the day fixed by the school.	40	B3 B4 B6	C9	D1 D9 D10
Problem and/or exercise solving	Exercises will be assessed along the course (25%). The final exam will include similar exercises (20%).	50	B3 B4 B6	C9	D1 D9 D10
Essay	The main guidelines to successfully develop short projects will be given.	8	B3 B4 B6	C9	D1 D9 D10

Other comments on the Evaluation

*Evaluaci�*n Continuous

The *evaluaci�*ncontinua makeà during the period of *imparticiÃ�*n of the subject, *segÃ�*nlos criteria established in the previous section and corresponds with 30% of the final note. To surpass the subject beà necessary to have reached *unapuntuaciÃ�*n *mÃ�*nima of 40% in the proof made in the date previously *fijadapor the centre, that corresponds with 70% of the final note. Those students *queno receive to the *evaluaciÃ�*n continuous (previous *autorizaciÃ�*n of the *direcciÃ�*n *dela *EEI) beÃ*n evaluated with a final examination on the contents of *latotalidad of the matter, that *supondrà 100% of the note.

Examination of Julio (2*� *Edici�*n)

In the examination *deJulio *tendrà in account the *evaluaciÃ�*n continuous (VÃ*lida only in the course 2019-20). The examination *tendrà the same *caracterÃ�*sticasque the previous and makeà in the previously fixed date by the centre. Those students *quequieran renounce to the *evaluaciÃ�*n continuous beÃ*n evaluated with an examination *finalsobre the contents of the whole of the matter (*teorÃ�to + *prÃ*ctica) *quesupondrà 100% of the note.

Extraordinary examination

Examination on *loscontenidos of the whole of the matter (*teor�to + *prÃ*ctica) that *supondrà 100% of the note.

Commitment �*tico:

It expects that the present student a behaviour \tilde{A} *tico suitable. In *casode detect a behaviour no \tilde{A} *tico (copy, plagiarism, *utilizaci \tilde{A} *n of *aparatoselectr \tilde{A} *nicos unauthorised, etc.), consider \tilde{A} that the student no *re \tilde{A} *ne *losrequisitos necessary to surpass the matter. In this case, the *calificaci \tilde{A} *nglobal in the present course *acad \tilde{A} *mico be \tilde{A} of suspense (0.0).

No allowà the *utilizaciÃ�*n of *ningÃ�*n device *electrÃ�*nico *durantelas proofs of *evaluaciÃ�*n, except *autorizaciÃ�*n expresses. The fact of *introducirun device *electrÃ�*nico unauthorised in the classroom of examination beà *consideradomotivo of no *superaciÃ�*n of the matter in the present course *acadÃ�*mico and *lacalificaciÃ�*n global beà of suspense (0.0).

Sources of information
Basic Bibliography
Callister, William, Materials Science and Engineering: an introduction, Wiley,
Askeland, Donald R, The science and engineering of materials, Cengage Learning,
Shackelford, James F, Introduction to materials science for engineers, Prentice-Hall,
Complementary Bibliography
Smith, William F, Fundamentals of materials science and engineering, McGraw-Hill,
AENOR, Standard tests,
Montes J.M., Cuevas F.G., Cintas J., Ciencia e Ingeneiría de Materiales, Paraninfo,

Recommendations

Subjects that continue the syllabus

Materials engineering/V12G380V01504

Subjects that are recommended to be taken simultaneously

Fundamentals of manufacturing systems and technologies/V12G380V01305

Subjects that it is recommended to have taken before

Computer science: Computing for engineering/V12G350V01203

Physics: Physics I/V12G380V01102 Physics: Physics II/V12G380V01202

Mathematics: Algebra and statistics/V12G380V01103

Mathematics: Calculus I/V12G380V01104 Chemistry: Chemistry/V12G380V01205