Universida_{de}Vigo

Subject Guide 2019 / 2020

IDENTIFYIN					
	cience and technology				
Subject	Materials science				
	and technology				
Code	V12G330V01301				
Study	Degree in				
programme	Industrial				
	Electronics and				
	Automation				
	Engineering				
Descriptors	ECTS Credits		Choose	Year	Quadmester
	6		Mandatory	2nd	<u>1st</u>
Teaching	Spanish				
language	Galician				
Department					
Coordinator	Figueroa Martínez, Raúl				
	Abreu Fernández, Carmen María				
Lecturers	Abreu Fernández, Carmen María				
	Cortes Redin, María Begoña				
	Figueroa Martínez, Raúl				
	Guitián Saco, María Beatriz				
	Iglesias Rodríguez, Fernando				
E-mail	cabreu@uvigo.es				
	raulfm@uvigo.es				
Web	http://faitic.uvigo.es				
General	The aim of this subject is to introduce	the main conc	epts of materials t	echnology as	s well as to study
description	applications of the most common mat			- 5	-

Competencies

<u>Co</u>de

B3 CG3 Knowledge in basic and technological subjects that will enable students to learn new methods and theories, and provide them the versatility to adapt to new situations.

B4 CG4 Ability to solve problems with initiative, decision making, creativity, critical thinking and the ability to communicate and transmit knowledge and skills in the scope of industrial engineering in the field of Industrial Electronic and Automation.

B6 CG6 Capacity for handling specifications, regulations and mandatory standards.

C9 CE9 Knowledge of the fundamentals of the science, technology and chemistry of materials. Understand the relationship between microstructure, the synthesis, processing and properties of materials.

D1 CT1 Analysis and synthesis.

D5 CT5 Information Management.

D9 CT9 Apply knowledge.

D10 CT10 Self learning and work.

Learning outcomes				
Expected results from this subject		Training and Le	arning Results	
New	B3	C9	D10	
New	B3	C9	·	
New	B4	·	·	
	B6			
New	B4	C9	D9	
New	B3	C9		
	B6			
New			D1	
New	B6	C9	D10	

New		D1	
		D5	
		D9	
New	B6	D1	
		D9	

Contents	
Торіс	
Introduction	Introduction to the Science and Technology of Material. Classification of the materials. Terminology. Orientations for the follow-up of the matter.
Crystalline arrangement.	Crystalline and amorphous solids. Crystalline lattices, characteristics and imperfections. Allotropic transformations.
Properties of materials. Laboratory practices.	Mechanical, chemical, thermal, electric and magnetic properties. Standars for materials analysis. Compressive and tensile deformation. Principles of fracture mechanisms. Toughness. Hardness. Main test methods. Fundamentals of thermal analysis. Fundamentals of non-destructive esting. Introduction to metallography. Binary isomorphous and eutectic systems. Microstructure in eutectic alloys. Analyses of practical situations.
Metallic materials.	Solidification. Constitution of alloys. Grain size. Main binary phase diagrams. Processing. Carbon steels: classification and applications. Cast iron alloys. Heat treatments: ims, fundamentals and classification. Annealing, normalizing, quenching and tempering. Nonferreous alloys.
Polymers and composites	General concepts. Classification. Properties. Types of polymers. Processing. Classification of composite materials. Polymer matrix composite materials. Processing of composite materials. Problems related to polymeric and composite materials.
Ceramic materials	Structure and bonding in ceramic materials. Silicates structure. Glasses. Properties of ceramic materials. Processing of ceramic materials. Applications.

	Class hours	Hours outside the	Total hours
		classroom	
Introductory activities	1.5	0	1.5
Lecturing	31	55.8	86.8
Laboratory practical	18	18	36
Autonomous problem solving	0	12	12
Objective questions exam	0.5	0.5	1
Problem and/or exercise solving	1	0.95	1.95
Problem and/or exercise solving	1.25	1.5	2.75
Essay	0.5	7.5	8

*The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies	
	Description
Introductory activities	Presentation of the subject. Introduction to materials science and technology.
Lecturing	Exhibition by the lecturers of the main contents of the subject, theoretical bases and/or projects
	guidelines. Hands on science methodology.
Laboratory practical	Practical application of the theoretical contents. Practical exercises in the materials laboatory.
Autonomous problem solving	Formulation of a practical activity related to the subject. The student must be able to resolve them by himself.

Methodologies	Description
Lecturing	
Laboratory practical	
Tests	Description
Problem and/or exercise solving	
Essay	

	Description	Qualification			g and Results
Laboratory practical	Attendance, participation and periodical assignments.	2	B3 B6	C9	D1 D9 D10
Problem and/or exercise solving	In the final exam, short questions will be included. The final exam will be hold the day fixed by the school.	40	B3 B4 B6	C9	D1 D9 D10
Problem and/or exercise solving	Exercises will be assessed along the course (25%). The final exam will include similar exercises (20%).	50	B3 B4 B6	C9	D1 D9 D10
Essay	The main guidelines to successfully develop short projects will be given.	8	B3 B4 B6	C9	D1 D9 D10

Other comments on the Evaluation

*Evaluaci�*n Continuous

The *evaluaci�*ncontinua makeà during the period of *imparticiÃ�*n of the subject, *segÃ�*nlos criteria established in the previous section and corresponds with 30% of the final note. To surpass the subject beà necessary to have reached *unapuntuaciÃ�*n *mÃ�*nima of 40% in the proof made in the date previously *fijadapor the centre, that corresponds with 70% of the final note. Those students *queno receive to the *evaluaciÃ�*n continuous (previous *autorizaciÃ�*n of the *direcciÃ�*n *dela *EEI) beÃ*n evaluated with a final examination on the contents of *latotalidad of the matter, that *supondrà 100% of the note.

Examination of Julio (2*� *Edici�*n)

In the examination *deJulio *tendrà in account the *evaluaciÃ $^{\circ}$ *n continuous (VÃ*lida only in the course 2019-20). The examination *tendrà the same *caracterÃ $^{\circ}$ *sticasque the previous and makeà in the previously fixed date by the centre. Those students *quequieran renounce to the *evaluaciÃ $^{\circ}$ *n continuous beÃ*n evaluated with an examination *finalsobre the contents of the whole of the matter (*teorÃ $^{\circ}$ to + *prÃ*ctica) *quesupondrà 100% of the note.

Extraordinary examination

Examination on *loscontenidos of the whole of the matter (*teorÃ to + *prÃ*ctica) that *supondrà 100% of the note.

Commitment �*tico:

It expects that the present student a behaviour \tilde{A} *tico suitable. In *casode detect a behaviour no \tilde{A} *tico (copy, plagiarism, *utilizaci \tilde{A} *n of *aparatoselectr \tilde{A} *nicos unauthorised, etc.), consider \tilde{A} that the student no *re \tilde{A} *ne *losrequisitos necessary to surpass the matter. In this case, the *calificaci \tilde{A} *nglobal in the present course *acad \tilde{A} *mico be \tilde{A} of suspense (0.0).

No allowà the *utilizaciÃ�*n of *ningÃ�*n device *electrÃ�*nico *durantelas proofs of *evaluaciÃ�*n, except *autorizaci�*n expresses. The fact of *introducirun device *electr�*nico unauthorised in the classroom of examination beà *consideradomotivo of no *superaciÃ�*n of the matter in the present course *acadÃ�*mico and *lacalificaciÃ�*n global beà of suspense (0.0).

Basic Bibliography	
Callister, William, Materials Science and Engineering: an introduction, Wiley,	
Askeland, Donald R, The science and engineering of materials, Cengage Learning,	
Shackelford, James F, Introduction to materials science for engineers, Prentice-Hall,	
Complementary Bibliography	
Smith, William F, Fundamentals of materials science and engineering, McGraw-Hill,	
AENOR, Standard tests,	
Montes J.M., Cuevas F.G., Cintas J., Ciencia e Ingeneiría de Materiales, Paraninfo,	

Recommendations

Subjects that continue the syllabus

Materials engineering/V12G380V01504

Subjects that are recommended to be taken simultaneously

Fundamentals of manufacturing systems and technologies/V12G380V01305

Subjects that it is recommended to have taken before Computer science: Computing for engineering/V12G350V01203 Physics: Physics I/V12G380V01102 Physics: Physics II/V12G380V01202 Mathematics: Algebra and statistics/V12G380V01103 Mathematics: Calculus I/V12G380V01104 Chemistry: Chemistry/V12G380V01205