Universida_{de}Vigo

Subject Guide 2018 / 2019

IDENTIFYIN	× =::::::				
	of materials				
Subject	Mechanics of				
	materials				
Code	V12G360V01404				
Study	Degree in				
programme	Industrial				
	Technologies				
	Engineering				
Descriptors	ECTS Credits		Choose	Year	Quadmester
	6		Mandatory	2nd	2nd
Teaching	Spanish				
language	Galician				
Department	Materials Engineering, Applied N	Mechanics and Cons	truction	·	·
Coordinator	Caamaño Martínez, José Carlos				
	Riveiro Rodríguez, Belén				
Lecturers	Caamaño Martínez, José Carlos				
	Cabaleiro Núñez, Manuel				
	Conde Carnero, Borja				
	Filgueira Crespo, Manuel				
	Lorenzo Mateo, Jaime Alberto				
	Riveiro Rodríguez, Belén				
	Soilán Rodríguez, Mario				
E-mail	jccaam@uvigo.es				
	belenriveiro@uvigo.es				
Web	http://faitic.uvigo.es				_
General	Introduction to linear elastic ma	terials, and analysis	of internal loading	s, stress and	strain relationships. Study
description	of the fundamentals of mechani				
-					

Competencies

Code

- B3 CG3 Knowledge in basic and technological subjects that will enable them to learn new methods and theories, and equip them with versatility to adapt to new situations.
- B4 CG4 Ability to solve problems with initiative, decision making, creativity, critical thinking and to communicate and transmit knowledge, skills and abilities in the field of Industrial Engineering.
- C14 CE14 Knowledge and use of the principles of strength of materials.
- D1 CT1 Analysis and synthesis.
- D2 CT2 Problems resolution.
- D9 CT9 Apply knowledge.
- D10 CT10 Self learning and work.
- D16 CT16 Critical thinking.
- D17 CT17 Working as a team.

Lea	rnina	outco	mes

Expected results from this subject

Training and Learning
Results

To know the differences between rigid solid and elastic solid.	В3	C14	D1
To know the stress and deformation states in a deformable solid and the relationship between	B4		D2
them.			D9
Apply the acquired knowledge to the determination of the maximum values of stress at a point of	of a		D10
deformable solid.			D16
To know the basic principles governing the Mechanics of Materials.			D17

To know the relationships between the different stress resultants and the stresses. To apply the knowledge acquired to the determination of stress resultant diagrams.

To apply the acquired knowledge about stresses applied to bar elements.

To know the basics about deformations of bar elements.

To apply the knowledge acquired to the dimensioning of bar elements.

Contents			
Topic			
1. Introduction	1.1 Introduction		
	1.2 Review of statics fundamentals and applied concepts for further		
	progress in solid mechanics and stress analysis		
2. Basic principles of elasticity and mechanics of	f 2.0 Stress and strain. Linear elastic materials		
materials.	2.1. Normal stress in an axially loaded prismatic bar.		
	2.2. Equilibrium of a deformable body.		
	2.3. Stress-Strain diagram of ductile materials. Hooke□s Law.		
	2.4. Stress resultants. Diagrams.		
3. Axial loads	3.1. Normal forces.		
	3.2. Elastic deformation of an axially loaded member.		
	3.3. Statically governed problems.		
	3.4. Statically indeterminate problems.		
	3.5. Thermal stress and assembly misfits.		
4. Bending and shear	4.1 Beams: definition and types. Loads on beams.		
3	4.2 Internal shear forces and bending moments.		
	4.3 External load, shear force and bending moment relationships.		
	4.4 Shear and moment diagrams		
	4.5 Pure bending and non-uniform bending. Hypothesis and limitations.		
	4.6. Normal stresses in unsymmetric bending.		
	4.7 Symmetric bending. The flexure formula (Navier s Law).		
	4.8 Section modulus of a beam. Ideal beam cross-section.		
	4.9 Deflection of beams and shafts. Slope and deflection.		
	4.10 Hyperstatic bending.		
	4.11 The shear formula.		
5. Introduction to compressive buckling	4.1. Definition		
	4.2. Critical load. Euler's formula.		
	4.3. Limitations of Euler's formula.		
	4.4. Practical applications.		
6. Introduction to torsion	6.1. Definition.		
	6.2. Torsion in circula shafts.		
	6.3. Torque diagrams		
	6.4. Torsional stresses and deformations.		

Planning			
	Class hours	Hours outside the classroom	Total hours
Lecturing	32.5	49	81.5
Laboratory practices	9	23	32
Problem based learning	9	24.5	33.5
Essay questions exam	3	0	3

^{*}The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies	
	Description
Lecturing	Lecture where theoretical principles are presented using digital media, videos and blackboard.
Laboratory practices	Activities of application of the knowledge to concrete situations and of acquisition of basic skills and procedural skills related with the subject of study.
Problem based learning	Resolution of problems related to real case studies

Personalized attention	
Methodologies	Description

Assessment				
	Description	Qualification	Training Learn Resu	ing
Laboratory practices	A) it will evaluate the attendance and active participation in all the practicals of the semester, as well as the correct delivery (time and form) of all the documentation requested (reports, exercises, etc.). Practical sessions will be held in a fixed date, so it is not possible to attend the practical in a later date. Whether the student does not attend to a practical, he/she must demonstrate that the absence was due to unavoidable reasons (e.g medical reasons). Practicals will marked with the value indicated, only when the student reaches the minimum mark in the written exam, which is 45%. (See following section: 'Other comments')	2.5	B3 C14 B4	D1 D2 D9 D10 D16 D17
Problem base learning	d C) Written tests to evaluate the individual work delivered by the student. It will be compulsory the attendance to the 90% of the practicals to obtain the marks given in section C. The marks obtained in the sections A will proportionally affect to the marks of the section C. The section C will be marked with a maximum value of 12,5% of the total mark, only when the student reach the minimum mark in the written exam, which is 45%. (See following section: 'Other comments')	12.5	B3 C14 B4	D1 D2 D9 D10 D16
Essay questions exam	Written exam in the dates established by the School.	85	B3 C14 B4	D1 D2 D9 D10 D16

Other comments on the Evaluation

Students resigning continuum assessment (after School aproval) will be evaluated only through the written exam which will be graded with 100% of final mark.

Continuum assessment is composed of sections A and C. The maximum mark for continuum assessment (NEC) is 15%, which will be computed from the following equation: NEC (%) = $0.25 \cdot (A) + 1.25 \cdot (C) \cdot (A)$; where A and C are granted 0-1.

Ethical commitment: it is expected an adequate ethical behavior of the student. In case of detecting unethical behaviour (copying, plagiarism, unauthorized use of electronic devices, etc.) shall be deemed that the student does not meet the requirements for passing the subject. In this case, the overall rating in the current academic year will be Fail (0.0).

The use of any electronic device for the assessment tests is not allowed unless explicitly authorized. The fact of introducing unauthorized electronic device in the examination room will be considered reason for not passing the subject in the current academic year and will hold overall rating (0.0).

Sources		: C	
VALIFCAC	ΛT	Intorm	STIAN

Basic Bibliography

Hibbeler, R., Mechanics of materials,

Manuel Vázquez, Resistencia de materiales,

Complementary Bibliography

Ortiz Berrocal, L., Resistencia de materiales, Ed. McGraw-Hill,

González Taboada, J.A., Tensiones y deformaciones en materiales elásticos, Ed. Autor,

González Taboada, J.A., **Fundamentos y problemas de tensiones y deformaciones en materiales elásticos**, Ed. Autor,

Recommendations

Other comments

Requirements: To register for this module the student must have passed or be registered for all the modules of the previous year.