Universida_{de}Vigo

Subject Guide 2018 / 2019

~			Sub	ect Guide 2018 / 2019
IDENTIFYIN	NG DATA			
Chemistry,	, physics and geology: Integrated laboratory 2			
Subject	Chemistry, physics			
	and geology:			
	Integrated			
	laboratory 2			
Code	V11G200V01202			
Study	(*)Grao en Química			
programme				
Descriptors	ECTS Credits Choos	e	Year	Quadmester
		education	1st	2nd
Teaching	Spanish			
language				
Department	t Applied Physics			
	Physical Chemistry			
	Inorganic Chemistry			
	Organic Chemistry			
Coordinator	Marine Geosciences and Territorial Planning			
Coordinator				
Lecturers	Alejo Flores, Irene Alonso Gómez, José Lorenzo			
	Besada Pereira, Pedro			
	Francés Pedraz, Guillermo			
	Gago Duport, Luís Carlos			
	Pérez Arlucea, Marta María			
	Pérez Iglesias, María Teresa			
	Prieto Jiménez, Inmaculada			
	Ramos Docampo, Miguel Alexandre			
	Rodríguez Arguelles, María Carmen			
E-mail	iprieto@uvigo.es			
Web	http://faitic.uvigo.es			
General	In this matter, students will apply in a more specific way the cr	riteria and	practical skills le	earned in "Integrated
description	Laboratory I".			
	Students will carry out diverse experiments that will allow ther			
	will be a focus on the observation and preparation of a laborat	ory notebo	ok as well as in	the realisation of a
	final report of the work carried out.			
Competenc	cies			
Code				
	nts have developed those learning skills that are necessary for th	em to cont	inue to underta	ke further study with a
	egree of autonomy			
	e chemicals safely, considering their physical and chemical prope	erties, inclu	ding the evaluat	tion of any specific
	ssociated with its use			
C26 Perform	n common laboratory procedures and use instrumentation in syr	nthetic and	analytical work	
	r, by observation and measurement of physical and chemical pro	operties, ev	vents or change	s, and document and
	them in a consistent and reliable way		fthoir cincifi-	

C28 Interpret data derived from laboratory observations and measurements in terms of their significance and relate them to the appropriate theory

C29 Demonstrate skills for numerical calculations and interpretation of experimental data, with special emphasis on precision and accuracy

D1 Communicate orally and in writing in at least one of the official languages of the University

D3 Learn independently

D4 Search and manage information from different sources

D5 Use information and communication technologies and manage basic computer tools

D6 Use mathematics, including error analysis, estimates of orders of magnitude, correct use of units and data representations

D7	Apply theoretical knowledge in practice
D8	Teamwork
D9	Work independently
D12	Plan and manage time properly
D13	Make decisions
D14	Analyze and synthesize information and draw conclusions
D15	Evaluate critically and constructively the environment and oneself

Learning outcomes			
Expected results from this subject	Tra	aining an Res	d Learning ults
Carry out basic experiences in physics in order to demonstrate or apply some of the basic laws.	A5	C27 C28 C29	D4 D6 D7 D8 D9 D13 D14 D15
Handle different equipment in the laboratory of Physics and Chemistry: multimeter, power supplies, oscilloscope, etc.	A5	C26 C27 C29	D6 D14
Analyze how different factors, such as the nature of the reagents, concentration, the presence of a catalyst or temperatureaffects the reaction rate.	э А5	C28	D3 D7 D9 D13 D14
Adjust the experimental conditions for a chemical process (temperature, agitation, etc.).	A5	C26 C27 C28	D3 D7 D8 D13
Carry out the synthesis of simple organic and inorganic substances.	A5	C25 C26 C27 C28	D1 D3 D4 D9 D12 D13 D14 D15
Distinguish a galvanic cell from an electrolytic cell and know how to build both types of cells.	A5	C25 C28	D1 D3 D4 D7 D8 D12 D13 D14 D15
Handle properly the molecular models for the representation of organic compounds.	A5	C28	D1 D3 D7 D9 D12 D13 D14
Apply the knowledge and skills acquired in solving simple problems of separation, purification and characterization of chemical compounds.	A5	C25 C26 C27 C28	D1 D3 D4 D7 D9 D12 D13 D14

Use diffraction programs and interpret electron microscopy images differentiating the structural information (HREM, SAED) and the morphological information (SEM).	A5	C28	D1 D3 D4 D5 D7 D8 D14
Contents			
Topic - Determination of the specific resistance of a conductor (1 session)			
- Ohm´s law: DC circuits (1 session)			
- Calibration of a thermistor (1 session)			
- Electromagnetic induction phenomena: induced currents , Faraday and Lenz laws. Transformer. (1 session)			
- Theorem of transfer of maximum power in a circuit (1 session)			
- Chemical equilibrium: Study of equilibrium of dissociation of a chemical reaction (2 sessions)			
- Chemical kinetics: Kinetic study of a chemical reaction (2 sessions)			
- State equation of the ideal gases (1 session)			
- Synthesis of simple inorganic compounds (2 sessions)			
- Inorganic reactions in aqueous medium (1 session)			
- Galvanic and electrolytic cells. The Nernst equation (2 sessions)			
- Synthesis of simple inorganic compounds (2 sessions)			
- Representation of organic molecules: Molecular models (1 session)			
- Separation techniques: Solid- liquid extraction and thin layer chromatography (1 session)			
- Separation techniques: Thin layer chromatography and column chromatography (1 session)			
- Synthesis of simple organic compounds (1 session)			
- Synthesis of organic polymers (1 session)			
 Introduction to morphological and microestructural characterization of crystals with optical microscopy with polarised light (2 sessions) 			
- Introduction to crystal growth techniques in the laboratory: Methods of supersaturation and monocrystals generation. Polymorphism. Crystal growth in gels. (1 session)			

Planning			
	Class hours	Hours outside the classroom	Total hours
Laboratory practices	72	40	112
Studies excursion	8	10	18
Short answer tests	2	6	8
Laboratory practice	3	9	12
*The information in the planning tabl	o is for quidanco only and doos no	at take into account the hot	araganaity of the students

*The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies	
	Description
Laboratory practices	Laboratory practices will be carried out in sessions of 3 hours each. The student will have the support material on the FAITIC platform, so they can have previous knowledge of the experiments to be performed.
Studies excursion	Each student individually will prepare a document on the subject of the practice. Attendance is mandatory to be able to be evaluated.

Methodologies	Description
Laboratory practices	Time dedicated by the professor to answer all the doubts and questions raised by the students throughout the course. The student will consult with professors what clarifications he deems appropriate to better understand the subject and successfully develop the tasks that were proposed These consultations will be addressed during the tutoring schedule.
Studies excursion	The student will consult with faculty what clarifications he deems appropriate in order to better understand the subject and successfully develop the tasks that were proposed

	Description	Qualification	ד ו	raining	and
		,			Results
Laboratory practices	The teacher will monitor the experimental work done by students in the laboratory sessions, as well as the notebook. Since it is a matter of experimental type, the attendance at laboratory	40	A5	C25 C26 C27 C28	D1 D3 D4 D5
	sessions is mandatory. It is important indicate that the non-attendance will be penalized in the final grade. If the number of absences is greater than 3, it will suppose to suspend the matter. Days missed will count as zeros in the lab note.			C28 C29	D3 D6 D7 D8 D9 D12
	In this section, the following points have special relevance:				D13 D14
	- How student works in the laboratory, including its degree of autonomy.				D15
	- How student solves the problems that arise when making practice.				
	- Knowledge necessary to carry out the practice.				
	- Material cleaning and treatment.				
	- Calculations needed to perform the work.				
	- Development of laboratory notebook/reports.		_		
Studies excursi	onlt will realise a report on the subject of the practice of field. The assistance is compulsory to be able to be evaluated.	5 10	A5	C27 C28	D1 D7 D14 D15
Short answer tests	It will realise a proof written relative to concrete aspects of the operations realised in the laboratory.	25	A5	C28 C29	D1 D6 D7 D14
Laboratory practice	It will realise a practical proof (session of laboratory) that will allow to evaluate the skills purchased by the students.	25	A5	C25 C26 C28	D1 D7 D9 D12 D13 D14

Other comments on the Evaluation

To be evaluated the student has to obtain a minimum note in the different sections that comprises the evaluation. This minimum note is of 3.5 in the theoretical and practical tests and in the field, and 4 in the assessment of laboratory practices.

Attendance at more than two practical sessions will imply that the student is already being evaluated, therefore, their qualification it can not be "Not Presented".

A responsible and honest behavior of the students who study this subject is required. No form of copy in any type of report, work or test. Fraudulent behavior may suppose suspending the subject during a full course.

In the second call, the evaluation will carry out of the following way:

A theoretical-practical test in which the results of the student's learning will be evaluated: 50%.

The score reached by the student during the course will be maintained in the following sections: follow-up of the work of laboratory (40%) and outdoor study/field practices (10%).

Sources of information
Basic Bibliography
Complementary Bibliography
Atkins, P.; Jones, L., Principios de Química , 5ª, Panamericana, 2012
Chang, R.; Goldsby, K.A., Química , 12ª, McGraw-Hill, 2017
Petrucci, R.; Herring, F.G.; Madura, J.D.; Bissonnette, C., Química General , 11ª, Pearson, 2017
Tipler, P.A.; Mosca, G., Física para la Ciencia y la Tecnología , 6ª, Reverte, 2010
Atkins, P.; de Paula, J., Química Física , 8ª, Panamericana, 2008
Shoemaker, D. P.; Garland, C.W.; Nibler, J.W., Experiments in Physical Chemistry, 8ª, McGraw-Hill, 2008
Beckmann, W., Crystallization: Basic Concepts and Industrial Application, John Wiley & Sons, 2013
Martínez Grau,M.A.; Csákÿ, A.G., Técnicas Experimentales en Síntesis Orgánica, 2ª, Sintesis, 2012
Wade, L.G., Química Orgánica , 7ª, Pearson Educación, 2012

Recommendations

Subjects that are recommended to be taken simultaneously

Physics: Physics 2/V11G200V01201 Geology: Geology/V11G200V01205 Mathematics: Mathematics 2/V11G200V01203 Chemistry: Chemistry 2/V11G200V01204

Subjects that it is recommended to have taken before

Biology: Biology/V11G200V01101 Physics: Physics I/V11G200V01102 Mathematics: Mathematics 1/V11G200V01104 Chemistry, physics and biology: Integrated laboratory 1/V11G200V01103 Chemistry: Chemistry 1/V11G200V01105