UniversidadeVigo

Subject Guide 2018 / 2019

IDEN		NG DATA			
Pnys	SICS: A				
Subje	CL	Linear Circuits			
Code		V05G303V01201			
Study	v	Degree in			
prog	, ramme	e Telecommunications			
1 5		Technologies			
		Engineering -			
		Teaching in English			
Desc	riptors	ECTS Credits	Choose	Year Q	uadmester
		6	Basic education	1st 2r	nd
Teac	hing	English			
langu	lage				
Depa	irtmen	It Signal Theory and Communications			
Coor	dinator	r Garcia Mateo, Carmen			
Lectu	irers	Cardenal Lopez, Antonio Jose			
		Garcia Mateo, Carmen			
		Garcia-Tunon Bianca, mes			
		Gonez Alduju, Malia Prol Podríguoz, Miguel			
Ema	il				
Wob	11				
Gene	ral	The course introduces the fundamentals of the lumped cir	rcuit principles an	d abstractions on whi	ch the design of
desci	ription	electronic systems is based. These include lumped circuit	models for source	es resistors inductor	s and
4656		capacitors. It intends to present some techniques to analy	/ze (to determine	currents and voltages	s) such systems:
		conventional analysis (integer-differential analysis, phaso	rs and impedance	s in sinusoidal regime	e) and linear
		systems theory based analysis (by using the Laplace and	Fourier transform	s).	,
				·	
Com	neten	ocies			
Code	peten				
B3	СG3· Т	The knowledge of basic subjects and technologies that ena	hles the student t	o learn new methods	and
55	techno	ologies, as well as to give him great versatility to confront a	and adapt to new	situations	unu
B4	CG4: T	The ability to solve problems with initiative, to make creative	ve decisions and t	o communicate and t	ransmit
5.	knowle	edge and skills, understanding the ethical and professional	responsibility of t	he Technical Telecon	nmunication
	Engine	eer activity.			
C4	CE4/FE	B4: Comprehension and command of basic concepts in line	ar systems and th	eir related functions	and transforms;
	electri	ic circuits theory, electronic circuits, physical principles of s	emiconductors ar	nd logical families, ele	ectronic and
	photor	nic devices, materials technology and their application to s	olve Engineering	problems.	
D2	CT2 UI	nderstanding Engineering within a framework of sustainab	e development.		
D3	CT3 Av	wareness of the need for long-life training and continuous	quality improveme	ent, showing a flexible	e, open and
	ethical	I attitude toward different opinions and situations, particul	arly on non-discrir	nination based on sex	k, race or
	religio	on, as well as respect for fundamental rights, accessibility, e	etc.		
Lear	ning o	outcomes			
Evno	ctod re	ocults from this subject		Trainin	a and Learning

Expected results from this subject	Training and Learning Results		
To know the elements and laws involved in lumped circuit analysis.	B1 C4 B5 C7 B6 C12		
	B14		

To show the ability to analyse linear circuits in different circumstances: to know how to choose among different alternatives when solving a problem. to know simplifying techniques, their constraints, and how to decide which ones must be used.	A1 A2 A3 A4 A5	B1 B2 B3 B4	C2 C3 C4 C8 C13 C22 C24	D1 D2 D3 D4 D8 D9 D11 D12 D14 D16 D18 D19
To translate the time domain into the transformed domains, by using transforms basic concepts.	A2	B1 B2	C4 C4 C5 C6 C13 C23	D2 D8 D9 D12
To be able to qualitatively justify the role played by circuit elements and their interactions.		B3	C4 C6 C12 C14 C15	D3
To master the language and symbolism of the discipline		B3	C4 C6 C12 C14 C15	D3

Contents	
Торіс	
Presentation and Introduction.	
I: DC Steady-State Response	Fundamental and derived magnitudes. Active and passive elements and their functional relationships. Kirchhoff's laws. Analysis by the technique of mesh voltages. Analysis by the techniques of node currents. Simplifying techniques; Thévenin and Norton equivalent circuits.
II: Sinusoidal Steady-state Response	Definition and parameters. Concepts of phasor and impedance. Mesh and node analysis of steady-state sinusoidal regime networks. Divisor circuits. Autoinductance and mutual inductance. Linear and ideal transformers. Power expressions. Thévenin and Norton equivalent circuits.
III: Two-Port Circuits	Definition of a two-port circuit. Characteristic parameters. Combining two-ports. A two-port in a circuit.
IV: Transient Response	Transient regime origin. Conditions of study. Inductors and capacitors in steady-state continuous regime. Single reactive element circuits.
V: Signals and Systems	Types of signals. Some relevant signals: step function, unit impulse function, exponential function, sinusoidal function. Types of systems. System properties; linear, time invariant systems; impulse response.
VI: The Laplace Transform	Definition. Direct transforms. Inverse transform determination. Application to linear circuits. The transfer function. Steady-state response in a circuit. Response to a sinusoidal input.

Filter concept. Filter types. Filter responses.

Planning				
	Class hours	Hours outside the classroom	Total hours	
Introductory activities	1	0	1	
Lecturing	24	48	72	
Problem based learning	19.5	19.5	39	
Laboratory practices	3	3	6	
Problem solving	4.5	13.5	18	
Laboratory practice	1	3	4	
Essay questions exam	2	8	10	
The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.				

Methodologies	
	Description
Introductory activities	Presentation of the course: syllabus, bibliography, teaching methodology, and assessment and grading procedures. Through this methodology the competencies CT2 and CT3 are developed.
Lecturing	The goal of this methodology is the presentation of the theoretical contents and the practical assessment about students learning abilities.
	Different exercises and problems related to the specific subject will be solved during these sessions, by the Professor or the students with his/her support, either individually or working in a group.
	Through this methodology the competencies CG3, CG4, CE4, CT2 and CT3 are developed.
Problem based learning	Theses sessions will consist on a supervised either individual or team problem solving of practical applications related to the theoretical content of the subject.
	The solutions could be analyzed, checked and compared using computational tools.
	At the end of 3 sesions, students will solve a evaluable task in a individual way.
	Through this methodology the competencies CG3, CG4 and CE4 are developed.
Laboratory practices	Two practical sessions will be carried out in the hardware lab, assembling and measuring circuits tasks will be covered. Out of the total of 4 hours, 1 hour will be dedicated to the evaluation of these sessions.
	Through this methodology the competencies CG3, CG4 and CE4 are developed.

Personalized attention		
Methodologies	Description	
Lecturing	Needs and study matter queries of students will be addres by the instructors on office hours.	
Laboratory practices	Instructors set the pace of the session and resolve any questions that arise during the realization of practice. Also on the office hours, instructors address the needs and queries of the students related to laboratory practice.	

Assessment					
Description	Qualification Training				
	and				
	Learning				
	Results				

Problem solving	There will be 3 tests in Group A schedule: ECA1, ECA2 and ECA3. The score of each of these three tests will be: 1.5, 3 and 3 points, respectively. To pass the subject by continuous evaluation, it is compulsory to attend all three tests and obtain at least 0.75 points in the ECA3 test. In 3 of the 11 sessions of Group B the resolution of an evaluable task (ECB1, ECB2, ECB3) with a maximum score of up to 0.5 points each will be considered, which means a total of 1.5 points.	90	B3 B4	C4
	The schedule of the tests will be approved in the CAG and will be available at the beginning of the semester.			
Laboratory practice	This test (ECHW) is done during Group B hours in the hardware laboratory. The specific day will be approved by the academic board (CAG) and will be available at the beginning of the semester. It is a test related to assembly and measurement of circuits, and will have a maximum score of 1 point. In these exercises the ability to work in groups, the adjustment to the design specifications and the presentation of results will be evaluated.	10	B3 B4	C4
	In order to pass the subject by continuous evaluation, attendance at the two lab sessions (hardware) and its corresponding one is mandatory. evaluation.			
Essay questions exam	Additionally to the continuous evaluation system based on the results achieved on the aforementioned tests, the students will have the option of a final examination. This final exam can include test type and/or reasoning questions, problem solving and/or exercises, as well as the development of practical cases. The maximum mark achieved on this exam will be 10 points.	0	B3 B4	C4

Other comments on the Evaluation

The student, in agreement to the official academic-year schedule, will have two opportunities during the academic year to pass the course:

1. First opportunity at the end of the semester. The student is free to choose the continuous evaluation system above described, without excluding the possibility to do a final exam. Possible cases:

- The marks in all the evaluation tests are individual.
- Students only doing the continuous evaluation (addition of the ECA1,ECA2,ECA3,ECB1,ECB2,ECB3 and ECHW scores): they are graded with the points obtained in the continuous evaluation.
- Students doing both the continuous evaluation and the exam: they are graded with the best of both qualifications.
- Students only doing the final exam: they are graded with the points obtained in the exam.

2. Second opportunity (or Extraordinary Exam). Students that do not reach the minimum grade at the end of the semester will have the option to do a final extraordinary exam of the full content of the subject, theory and practice. The extraordinary exam can include test type and/or reasoning questions, problem solving and/or exercises, as well as the development of practical cases. The maximum mark achieved on this exam (between 0 and 10) will be the final grade. It will replace the grade obtained during continuous evaluation (sum of the grades obtained during tests and final exam).

Additional comments:

- Students must attend to the group B assigned at the beginning of the semester.
- Group B attendance control will be carried out.
- Doing ECA2 or sucessives tests and/or the final exams will prevent the student to get the "Not presented" mark.
- The mark obtained during continuous evaluation will only be valid only for the corresponding academic year.
- It will be considered that the subject has been passed if the final mark is equal or above 5.

Re-scheduling of tests. In case of missing a test, instructors have not any compulsion to rescheduling.

Test results. Before each test, the date and revision procedure of assigned grading marks will be indicated. Such dates will imply a reasonable delay (in general, not greater than three weeks) between the date of test and the release of the grading marks.

Sources of information

Basic Bibliography

James W. Nilsson, Electric Circuits, 10,

Material docente, Página web, faitic.uvigo.es,

Complementary Bibliography

J.H. McClellan, R.W. Schafer, M.A. Yoder, Signal Processing First,

Recommendations

Subjects that continue the syllabus

Physics: Fundamentals of Electronics/V05G300V01305 Digital Signal Processing/V05G300V01304 Signal Transmission and Reception Techniques/V05G300V01404 Microwave Circuits/V05G300V01611 Radio Frequency Circuits/V05G300V01511 Analogue Electronics/V05G300V01624 Engineering of Electronic Equipment/V05G300V01523

Subjects that are recommended to be taken simultaneously

Mathematics: Calculus 2/V05G300V01203

Subjects that it is recommended to have taken before

Mathematics: Linear algebra/V05G300V01104 Mathematics: Calculus 1/V05G300V01105

Other comments

It is strongly recommended that students are familiar with complex numbers, trigonometric functions, linear equation system solving, elemental function derivatives and computation of simple integrals.