Universida_{de}Vigo

Subject Guide 2018 / 2019

IDENTIFYI				
Programm				
Subject	Programming I			
Code	V05G300V01205			
Study	Degree in			
programme	e Telecommunications			
	Technologies			
	Engineering			
Descriptors	ECTS Credits	Choose	Year	Quadmester
	6	Mandatory	1st	1st
Teaching	Spanish			
language	Galician			
Departmen	tTelematics Engineering			
Coordinato	r Rodríguez Hernández, Pedro Salvador			
Lecturers	Arriba Pérez, Francisco de			
	García Palomares, Ubaldo Manuel			
	Gil Solla, Alberto			
	López Bravo, Cristina			
	Pazos Arias, José Juan			
	Rodríguez Hernández, Pedro Salvador			
	Sousa Vieira, Estrella			
E-mail	pedro.rodriguez@uvigo.es			
Web	http://faitic.uvigo.es			
General	The aim of the course is to provide students with basic	skills to program i	n a high level lang	uage.
description	•			-

Cor	npetencies	
Coc		
B4		
B9	CG9: The ability to work in multidisciplinary groups in a Multilanguage environment and to con orally, knowledge, procedures, results and ideas related with Telecommunications and Electron	
C6	CE6/T1: The ability to learn independently new knowledge and appropriate techniques for the and exploitation of telecommunication systems and services	conception, development
C12	2 CE12/T7: The knowledge and use of basics in telecommunication networks, systems and service	e programming.
D2	CT2 Understanding Engineering within a framework of sustainable development.	
D4	CT4 Encourage cooperative work, and skills like communication, organization, planning and ac in a multilingual and multidisciplinary work environment, which promotes education for equalit fundamental rights.	
Lea	irning outcomes	
Exp	ected results from this subject	Training and Learning Results
Exp	ress the solution of a simple problem by means of algorithms using top-down design.	C12
	ntify the data needed to solve a problem and associate them with appropriate datatypes based their features (size, range, associated operators)	C12
	le simple algorithms using the basic types of statements: assignment, selection and iteration.	
		C12
Har	lare and define functions with a proper use of parameters.	C12 C12
Def	lare and define functions with a proper use of parameters. Idle I/O operations and file management.	
Def		C12
	Idle I/O operations and file management.	C12 C12
Cre	ndle I/O operations and file management. ine and use structured data types.	C12 C12 C12
Cre	ndle I/O operations and file management. ine and use structured data types. ine and manage dynamic data structures (lists, stacks, queues and trees).	C12 C12 C12 C12 C12

Predict the result of a sequence of statements, knowing the input data.

C12

Handle basic tools in an integrated development environment: text editor, compiler, linker,		C6	
debugger and documentation tools.			
Develop a small scale project following all the phases: requirements analysis, design,	B4	C6	D2
implementation, testing and documentation.	B9	C12	D4

Contents	
Торіс	
Lecture 1: The algorithm and the programming	1. The algorithm and its different representations: flowchart, pseudocode,
languages.	natural language.
	2. Algorithm implementation by means of a programming language.
	Programming paradigms: modular programming and structured
	programming.
	3. C language and the function main(). Source code and object code. The
	compiler and the interpreter.
	Input/output exercises: human-computer interface. The standard
	input/output files: stdin, stdout. The #include directive. Library functions.
Lecture 2: Grammar and basic elements	 The alphabet. Recursive derivations of sintactically valid sequences.
of C language.	Identifiers, numbers. Symbolic constants: The #define directive and
	macros. Use of the const qualifier.
	Variables and their attributes: name, value, address, types. Pointer
	variables. Declaration of simple variables and pointers:
	the direction & and reference * operators.
	3. The sizeof operator. Arithmetical operators. The assignment operator.
	Automatic type conversion and by means of the cast operator.
	Syntactic notation for expressions and statements. Simple and
	compound statements.
Lecture 3: Sequential, iteration	1. Evaluation of expressions with relational operators and boolean
and selection statements	operators.
	2. Decision statements: switch, if, nested if. The ternary operator (?:)
	3. The iterative statements and their importance in modular programming:
	while, do while and for. The break and continue statements.
Lecture 4: Arrays	1. Declaration of array variables. Memory allocation for multidimensional
	arrays.
	2. Unidimensional arrays and pointers: pointer arithmetic. Arrays of
	characters: the end of string character. Library functions for dealing with
	arrays of characters.
	3.Variable length arrays in standard C99.
	4. Dynamic memory allocation for 1 and 2 dimension arrays: the malloc(),
	calloc(), realloc() functions.
Lecture 5: Functions	1. Functions declaration and definition. Local, static and global variables.
	Function return value.
	2. Actual and formal parameters. Parameter passing by value and by
	reference: use of pointers. Command line arguments passing to function
	main().
	3. Creation and use of function libraries. Library functions for strings
	handling.
	4. Modular compilation. The conditional directives in a header file.
	5. Recursive functions: advantages and disadvantages.
Lecture 6: struct variables	1. struct variables: global declaration. Fields of a struct. Pointers to struct.
	The . (Point) and $->$ (arrow) operators.
	2. struct and a pointer to struct as a function parameter and return value.
	3. typedef with non trivial declarations.
	4. More complex data structures: nested structs, array of structs.
	5. Dynamic management in creating linear lists, circular lists and trees.
Lastura 7. Files	6. Insertion and removal of variables in a list.
Lecture 7: Files	1. Text files: fopen() and fclose() functions.
	2. Different file input/output functions: fprintf (), fscanf(), fgets(), feof().
	3. Functions with direct access to files.
	4. Information management between files and lists.
	5. Node structure in simple linked lists.
	6. File to list conversion and vice versa.
Planning	
i winning	

	Class hours	Hours outside the classroom	Total hours
Introductory activities	2	0	2
Lecturing	22	27	49

Laboratory practices	12	12	24	
Project based learning	10	28	38	
Laboratory practice	5	15	20	
Other	5	10	15	
Practices report	0	2	2	
The information in the planning table is f	مام امتين بالمرم مم مرما ما م	an makikalin linka ananimki		

*The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies		
	Description	
Introductory activities	Introduction to theoretical and practical activities.	
Lecturing	Professors present the main theoretical contents related to the subject	
	These sessions will include the development of works and programs by the students.	
	Through this methodology the competencies CE12 and CT2 are developed.	
Laboratory practices	During the first part of the term the student codifies, compiles and documents simple programs	
	guided by the instructor.	
	Some of these activities will require the submission of a report in order to be evaluated.	
	Through this methodology the competencies CG4, CE12 and CT2 are developed.	
Project based learning	In the last part of the term, the student must complete a low complexity project, under the	
	instructor supervision, which includes individual and in group activities.	
	Through this methodology the competencies CG4, CG9, CE6, CE12, CT2 and CT4 are developed.	

Personalized attention			
Methodologies	Description		
Lecturing	The professors will provide individual attention to the students along the term, solving their doubts and questions. Questions will be answered during the master sessions or during tutorial sessions. The professors will establish timetables for this purpose at the beginning of the term. This schedule will be published on the subject website.		
Laboratory practices	The professors will provide individual attention to the students along the term, solving their doubts and questions about the laboratory practises. Questions will be answered during the lab sessions or during tutorial sessions. The professors will establish timetables for this purpose at the beginning of the term. This schedule will be published on the subject website.		
Project based learning	The professors will provide individual attention to the students along the term, solving their doubts and questions about the project. Questions will be answered during the supervising sessions or during tutorial sessions. The professors will establish timetables for this purpose at the beginning of the term. This schedule will be published on the subject website.		

	Description	Qualification	Tra	ainina	and
		quameation	L	_earni	ng
				Result	S
Project based	The student will develop a project in the last weeks of the term, and will	25	Β4	C6	D4
learning	submit the C code implementing it The project will be assessed individually in the final laboratory test.		B9	C12	
Laboratory practice	Every 4 weeks, the student will take a practical individual test in the laboratory.	20	Β4	C12	
	At the end of the term, the student will take a final practical test.				
	All of them will consist in the development of a program in the computer.				
	Those tests will assess the student's progress with the laboratory practices and	b			
	with the project.				
Other	Every 4 weeks, the student will take a theory exam that may consist of:	50	Β4	C12	
	- short answer questions				
	- multiple choice questions				
	- troubleshooting and / or exercises				
	This exam will assess individually the student's mastership of the concepts				
	introduced in the master sessions. At the end of the term, the student will take	5			
	a final exam on the whole contents of the subject.				
Practices report	After the second week in the project development, the student will submit a	5	Β4	C12	D4
·	description of its design, in the form of a pseudocode or a flowchart.				
	At the end of the term, the student will submit a report, including the project's				
	documentation, that will be assessed individually.				

Other comments on the Evaluation

The **course planning in lectures** and the estimated time of the **most important assessment milestones** is detailed below (the dates provided for both the theory and the laboratory tests are tentative: the schedule of the

midterm/intermediate exams will be approved in the Comisión Académica de Grado (CAG) and will be available at the beginning of each academic semester).

- Week 1: Theory introduction + Lectures 1 and 2
- Week 2: Lecture 3 | Practice introduction + Practice 1
- Week 3: Lectures 3 and 4 | Practice 2
- Week 4: Lecture 4 + Theory Test 1 (PT1) | Laboratory Test 1 (PP1)
- Week 5: Lecture 4 | Practice 3
- Week 6: Lecture 5 | Practice 4
- Week 7: Lecture 5 | Practice 45
- Week 8: Lecture 5 + Theory Test 2 (PT2) | Laboratory Test 2 (PP2)
- Week 9: Lectures 5 and 6 | Practice 6
- Week 10: Lecture 6 | Practice fulfilment + Project (1h)
- Week 11: Lecture 6 | Project (2h) + Project design submission (pseudocode or flowchart)
- Week 12: Lecture 7 + Theory Test 3 (PT3) | Project (1h) + Laboratory Test 3 (PP3)
- Week 13: Lecture 7 | Project (2h)
- Week 14: Project (2h)
- Before the final exams, project submission (coding and documentation)
- Finals: Final Theory Test (PTF) Final Laboratory Test (PPF)

In all courses the School offers two evaluation modes: **Continuous evaluation** and **eventual evaluation**. The student must opt to the latter one explicitly, no latter than the week before the Laboratory Test 2 (PT2) is taken. The **continuous evaluation** will be considered as "passed" if the final grade (NFC) obtained by the student is at least 5. This final grade is the weighted geometric mean between the theory, laboratory and project tests grades, calculated as follows:

NFC = NTC $^0.5 * NPC^{^0.2} * NPR^{^0.3}$ where:

- Theory Grade by Continuous Evaluation: NTC = 0.1*PT1+0.1*PT2+0.2*PT3+0.6*PTF
- Practice Grade by Continuous Evaluation: NPC = 0.25*PP1+0.25*PP2+0.5*PP3
- Project Grade : NPR = 0.9*PPF+0.1*PDD

The Final Theory Test (PTF) is an exam that may consist of short answer questions and/or multiple choice questions and/or troubleshooting and/or exercises. It assesses the mastership of the contents introduced in the lectures. The Final Practice Test (PPF) assesses the proper coding in C to deal with a medium level project. While the project development is a group activity, it is assessed individually. Indirectly, the PPF also assesses the mastership of the contents introduced in the lectures and the laboratory practices.

The **Design and Documentation Test** (PDD) assesses the quality of the pseudocode or the flowchart describing the project's design (submitted the 11th week), and project's documentation report submitted before the final exams The use of the weighted geometric means implies that the course is not passed if either NPC or NTC or NPR is graded cero. No test in the continuous evaluation mode is repeatable; that is, the instructor has no obligation to reschedule an evaluated activity missed by a student.

The date and procedures for the revision of the grades will be known before the evaluation tests. The students will have the chance of reviewing the grades preferably within two weeks after the evaluation.

In order to pass the course by the **eventual evaluation mode**, the final grade obtained by the student (NFF) must be at least 5.

This mode will consist of the same exams as the continuous evaluation one (although with different weight in the final grade), that is, an exam that may consist of short answer questions and/or multiple choice questions and/or troubleshooting and/or exercises (PTF) and a laboratory test (PPF, which will include the evaluation of the project). The final grade is the weighted geometric mean between the theory and project grades, calculated as follows: NFF = NTF^0.5 * NPR^0.5

Both the **continuous evaluation grade** (NFC) and the **eventual evaluation grade** (NFF) will be computed to all students that take the final tests (theory and practice). The final grade will be the higher one.

A "No Present" grade will be granted:

- If the student opts for the continuous evaluation mode, when no test is taken after the Laboratory Test 1 (PP1)
- If the student opts for the eventual evaluation mode, when no final test (PTF and PPF) is taken.

University regulations allow students to take an additional test to pass the course (second call evaluation). In order to pass the course using this second call evaluation, the final grade obtained by the student (NFS) must be at least 5. This second call evaluation will consist of an exam that may consist of short answer questions and/or multiple choice questions and/or troubleshooting and/or exercises (Second Call Theory Test: PTS) and a laboratory test which will include the evaluation of the project (Second Call Laboratory Test: PPS). The final grade is the weigthed geometric mean between the theory and practice grades, calculated as follows: NFS = NTS^0.5 * NPS^0.5

where:

• Theory Grade by second call Evaluation (NTS): if the student takes the Second Call Theory Test, NTS will be the grade achieved in that test:

NTS = PTS

Otherwise, NTS will be the theory grade obtained for the theoretical tests in his/her first chance evaluation.

• Practice Grade by second call Evaluation (NPS): if the student takes the Second Call Laboratory Test, NPS will be the weighed addition of the grade achieved in that test plus the grade obtained in the design and documentation test:

NPS = 0.9*PPS+0.1*PDD

Otherwise, NPS will be the practice grade obtained for the practical tests in his/her first chance evaluation.

In order to pass the course using the (end of degree) extraordinary evaluation system, the final grade obtained by the student (NFG) must be at least 5.

This Extraordinary evaluation will consist of an exam that may consist of short answer questions and/or multiple choice questions and/or troubleshooting and/or exercises (Extraordinary Theory Test: PTG) and a laboratory test which will include the evaluation of the project (Extraordinary Laboratory Test: PPG). The final grade is the weigthed geometric mean between the theory and practice grades, calculated as follows:

NFG = NTG^0.5 * NPG^0.5

All the partial and final grades will only be valid for the term the student is enrolled to, that is, in case the student repeates the subject, he or she will not retain any of the grades of the previous year.

Plagiarism is regarded as serious dishonest behavior. If any form of plagiarism is detected in any of the tests or exams, the final grade will be FAIL (0), and the incident will be reported to the corresponding academic authorities for prosecution

Sources of information

Basic Bibliography

Brian W. Kernighan & Dennis M. Ritchie, **The C Programming Language**, 1995, Prentice Hall, 1983 Brian W. Kernighan & Dennis M. Ritchie, **El Lenguaje de Programación C**, 1995, Prentice Hall, 1983

Manuel Caeiro Rodríguez, Enrique Costa Montenegro, Ubaldo García Palomares, Cristina López Bravo, J, **Practicar Programación en C**, 2014,

Complementary Bibliography

Ignacio Alvarado Aldea, Jose María Maestre Torreblanca, Carlos Vivas Venegas, Ascensión Zafra Cabeza, **100 Problemas** Resueltos de Programación en Lenguaje C para Ingeniería, 2017, Paraninfo, 2017

Stephen G. Kochan, **Programming in C**, 2014, 2005

Osvaldo Cairo Battistuti, **Fundamentos de Programación**, 2006,

José Rafael García-Bermejo Giner, Programación Estructurada en C, 2008,

James L. Antonakos & Kenneth C. Mansfield Jr., Programación Estructurada en C, 2004, 1997

Jorge A. Villalobos S. & Rubby Casallas G., Fundamentos de Programación: Aprendizaje Activo Basado en Casos, 2006,

Recommendations	
Subjects that continue the syllabus	

Subjects that it is recommended to have taken before

Informatics: Computer Architecture/V05G300V01103

Other comments

Programming II course continues this course in the second year.