# UniversidadeVigo

# Subject Guide 2018 / 2019

| IDENTIFYI          | NG DATA                                                                                                                                                                                              |           |                |                    |          |          |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|--------------------|----------|----------|
| Physics: F         | elds and Waves                                                                                                                                                                                       |           |                |                    |          |          |
| Subject            | Physics: Fields and                                                                                                                                                                                  |           |                |                    |          |          |
| Cada               | Waves                                                                                                                                                                                                |           |                |                    |          |          |
|                    | V050300V01202                                                                                                                                                                                        |           |                |                    |          |          |
| Sludy              | Telecommunications                                                                                                                                                                                   |           |                |                    |          |          |
| programme          | Technologies                                                                                                                                                                                         |           |                |                    |          |          |
|                    | Engineering                                                                                                                                                                                          |           |                |                    |          |          |
| Descriptors        | ECTS Credits Choose                                                                                                                                                                                  |           | Year           |                    | Ouadm    | ester    |
|                    | 6 Basic educ                                                                                                                                                                                         | ation     | 1st            |                    | 2nd      |          |
| Teaching           | Spanish                                                                                                                                                                                              |           |                |                    | -        |          |
| language           | Galician                                                                                                                                                                                             |           |                |                    |          |          |
| Department         | Signal Theory and Communications                                                                                                                                                                     |           |                |                    |          |          |
| Coordinator        | Pino García, Antonio                                                                                                                                                                                 |           |                |                    |          |          |
| Lecturers          | Fraile Peláez, Francisco Javier                                                                                                                                                                      |           |                |                    |          |          |
|                    | Gómez Araújo, Marta                                                                                                                                                                                  |           |                |                    |          |          |
|                    | González Valdés, Borja                                                                                                                                                                               |           |                |                    |          |          |
|                    | Lorenzo Rodríguez, María Edita de                                                                                                                                                                    |           |                |                    |          |          |
|                    | Obelleiro Basteiro, Fernando                                                                                                                                                                         |           |                |                    |          |          |
|                    | Pino Garcia, Antonio                                                                                                                                                                                 |           |                |                    |          |          |
|                    | Rubinos Lopez, José Oscar                                                                                                                                                                            |           |                |                    |          |          |
|                    | Vazquez Alejos, Ana                                                                                                                                                                                  |           |                |                    |          |          |
| <b>F</b>           | Vera Isasa, Maria                                                                                                                                                                                    |           |                |                    |          |          |
| E-mail             | agpino@uvigo.es                                                                                                                                                                                      |           |                |                    |          |          |
| Web                | http://faitic.uvigo.es                                                                                                                                                                               |           |                | <u> </u>           |          |          |
| description        | waves, which are the physical medium for transmission of informatic<br>Mathematical modeling of electromagnetic fields that<br>provide insights into the behavior of electromagnetic waves in real e | on at al  | ments will be  | aneous<br>e introd | speed    |          |
| Competen           | ries                                                                                                                                                                                                 |           |                |                    |          |          |
| Code               |                                                                                                                                                                                                      |           |                |                    |          |          |
|                    | be knowledge of basic subjects and technologies that enables the stu                                                                                                                                 | udant t   | o learn new r  | nothod             | c and    |          |
| techno             | logies, as well as to give him great versatility to confront and adapt t                                                                                                                             | to new    | situations     | nethou             | 5 unu    |          |
| C1 CE1/FE          | 31: The ability to solve mathematical problems in Engineering. The ar                                                                                                                                | otitude   | to apply kno   | wledge             | about    | linear   |
| algebr             | a, geometry, differential geometry, differential and integral calculus.                                                                                                                              | differe   | ntial and part | tial diff          | erentia  |          |
| equati             | ons; numerical methods, numerical algorithms, statistics and optimiz                                                                                                                                 | ation     | [              |                    |          |          |
| C3 CE3/FE          | 33: Comprehension and command of basic concepts about the genera                                                                                                                                     | al laws   | of mechanics   | s, thern           | nodyna   | mics,    |
| electro            | magnetic fields and waves and electromagnetism and their applicati                                                                                                                                   | on to s   | olve Enginee   | ring pro           | blems    |          |
| D3 CT3 Av          | vareness of the need for long-life training and continuous quality imp                                                                                                                               | rovem     | ent, showing   | a flexib           | ole, ope | en and   |
| ethical            | attitude toward different opinions and situations, particularly on non                                                                                                                               | n-discrii | mination base  | ed on s            | ex, rac  | e or     |
| religio            | n, as well as respect for fundamental rights, accessibility, etc.                                                                                                                                    |           |                |                    |          |          |
|                    |                                                                                                                                                                                                      |           |                |                    |          |          |
| Learning o         | utcomes                                                                                                                                                                                              |           |                |                    |          |          |
| Expected re        | sults from this subject                                                                                                                                                                              |           |                | Traini             | ng and   | Learning |
|                    | ,                                                                                                                                                                                                    |           |                |                    | Resu     | lts      |
| Resolve pro        | blems applying the laws of Ampère, Gauss and Faraday.                                                                                                                                                |           | E              | 33                 | C1       | D3       |
| •                  |                                                                                                                                                                                                      |           |                |                    | C3       |          |
| Know and a         | pply the Maxwell Equations                                                                                                                                                                           |           | E              | 33                 | C1       | D3       |
|                    | ·                                                                                                                                                                                                    |           |                |                    | C3       |          |
| Calculate th       | e main parameters of the electromagnetic waves: frequency, wavele                                                                                                                                    | ength, p  | propagation I  | 33                 | C3       | D3       |
| <u>constant, p</u> | plarization, Poynting vector, phase constant, attenuation constant.                                                                                                                                  |           |                |                    |          |          |
| Analyze the        | propagación of waves in media with and without losses.                                                                                                                                               |           | E              | 33                 | C3       | D3       |

# Торіс

| 1. Vector and differential analysis of fields | 1.1 Scalar and vector fields                                            |
|-----------------------------------------------|-------------------------------------------------------------------------|
| -                                             | 1.2 Systems of coordinates in space                                     |
|                                               | 1.3 Vector Algebra                                                      |
|                                               | 1.4 Integral Operators                                                  |
|                                               | 1.5 Differential operators                                              |
|                                               | 1.6 Properties of operators                                             |
| 2. Electrostatic fields                       | 2.1 Sources of the electrostatic field                                  |
|                                               | 2.2 Equations of the electrostatic field, electric potential            |
|                                               | 2.3 Electrostatic fields produced by charge distributions               |
|                                               | 2.4 Equations of Poisson and Laplace                                    |
|                                               | 2.5 Electrostatic field in material media                               |
| 3. Magnetostatic fields                       | 3.1 Sources of magnetostatic field                                      |
|                                               | 3.2 Magnetostatic field equations                                       |
|                                               | 3.3 Magnetostatic field produced by current distributions               |
|                                               | 3.4 Magnetostatic filed in material media                               |
| 4. Maxwell Model                              | 4.1 Maxwell's equations in integral form                                |
|                                               | 4.2 Differential form of Maxwell's equations                            |
|                                               | 4.3 Boundary conditions.                                                |
|                                               | 4.4 Energy balance of the electromagnetic field                         |
|                                               | 4.5 Harmonic time variation                                             |
|                                               | 4.6 Harmonic time variation in material media                           |
| 5. Wave equation and its solutions            | 5.1 Wave equation for time harmonic fields                              |
|                                               | 5.2 Propagation, attenuation and phase constants                        |
|                                               | 5.3 Solutions in rectangular coordinates                                |
|                                               | 5.4 Progressive, stationary and evanescent waves in lossy and losseless |
|                                               | media                                                                   |
| 6. Uniform plane waves                        | 6.1 Expressions of the fields                                           |
|                                               | 6.2 Characteristic impedance                                            |
|                                               | 6.3 Poynting Vector                                                     |
|                                               | 6.4 Polarization                                                        |
| 7. Waves in the presence of obstacles         | 7.1 Incident wave, scattered wave and transmitted wave                  |
|                                               | 7.2 Standing waves                                                      |
|                                               | 7.3 Standing wave pattern                                               |
|                                               | 7.4 Polarization and power                                              |
|                                               |                                                                         |

| Planning                               |                                  |                                |                             |  |  |
|----------------------------------------|----------------------------------|--------------------------------|-----------------------------|--|--|
|                                        | Class hours                      | Hours outside the<br>classroom | Total hours                 |  |  |
| Lecturing                              | 16                               | 24                             | 40                          |  |  |
| Case studies                           | 20                               | 30                             | 50                          |  |  |
| Computer practices                     | 4                                | 6                              | 10                          |  |  |
| Problem solving                        | 10                               | 15                             | 25                          |  |  |
| Essay questions exam                   | 2                                | 10                             | 12                          |  |  |
| Case studies                           | 2                                | 4                              | 6                           |  |  |
| Problem solving                        | 2                                | 5                              | 7                           |  |  |
| *The information in the planning table | is for guidance only and does no | ot take into account the het   | erogeneity of the students. |  |  |

| Methodologies      |                                                                                                      |  |  |  |
|--------------------|------------------------------------------------------------------------------------------------------|--|--|--|
|                    | Description                                                                                          |  |  |  |
| Lecturing          | Exhibition by the professor of the contents on the matter object of study, theoretical bases and/or  |  |  |  |
|                    | guidelines of a work, exercise or project to develop by the student.                                 |  |  |  |
|                    | Through this methodology the competencies CG3, CE1 and CT3 are developed.                            |  |  |  |
| Case studies       | Analysis of a fact, problem or real event with the purpose to know it, interpret it, resolve it,     |  |  |  |
|                    | generate hypothesis, contrast data, think about it, complete knowledges, diagnose it and train in    |  |  |  |
|                    | alternative procedures of solution.                                                                  |  |  |  |
|                    | This metodology will be used both in large and medium size groups.                                   |  |  |  |
|                    | Through this methodology the competencies CG3, CE1, CE3 and CT3 are developed.                       |  |  |  |
| Computer practices | Activities application of knowledge to specific situations, and the acquisition of basic skills and  |  |  |  |
|                    | procedural matters related to the object of study, which are held in computer rooms.                 |  |  |  |
|                    | Electromagnetic simulators will be used.                                                             |  |  |  |
|                    | Through this methodology the competencies CG3, and CE3 and are developed.                            |  |  |  |
| Problem solving    | Problems and/or exercises related with the subject are formulated. The student has to develop the    |  |  |  |
|                    | suitable or correct solutions by development of routines, the application of formulas or algorithms, |  |  |  |
|                    | the application of procedures of transformation of the available information and the interpretation  |  |  |  |
|                    | of the results. It is a complement of the lectures.                                                  |  |  |  |
|                    | Through this methodology the competencies CG3, CE1, CE3 and CT3 are developed.                       |  |  |  |

| Personalized attention |                                                                            |  |  |
|------------------------|----------------------------------------------------------------------------|--|--|
| Methodologies          | Description                                                                |  |  |
| Lecturing              | The student will receive personalized attention during the tutoring hours. |  |  |
| Problem solving        | The student will receive personalized attention during the tutoring hours. |  |  |
| Case studies           | The student will receive personalized attention during the tutoring hours. |  |  |
| Computer practices     | The student will receive personalized attention during the tutoring hours. |  |  |
| Tests                  | Description                                                                |  |  |
| Essay questions exam   | The student will receive personalized attention during the tutoring hours. |  |  |
| Case studies           | The student will receive personalized attention during the tutoring hours. |  |  |
| Problem solving        | The student will receive personalized attention during the tutoring hours. |  |  |

| Assessment                 |                                                                                                                                                                                                                                                                                                                          |    |                                                   |          |    |  |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------------------|----------|----|--|--|
|                            | Description                                                                                                                                                                                                                                                                                                              |    | Qualification Training and<br>Learning<br>Besults |          |    |  |  |
| Essay<br>questions<br>exam | Proof for individual evaluation of the skills that includes open questions on a subject. The students have to develop, relate, organise and present their knowledge about the subject in an extensive answer.                                                                                                            | 40 | B3                                                | C1<br>C3 | D3 |  |  |
| Case studies               | Test for individual evaluation of the competences that includes the approach of a practical case. Students develop the analysis of the situation in order to know it, interpret it, solve it, generate hypothesis, contrast data, reflect, complete knowledge, diagnose it and train in alternative solution procedures. | 40 | В3                                                | C1<br>C3 | D3 |  |  |
| Problem<br>solving         | Individual proof where students must develop appropriate or correct solutions<br>through the exercise of routines, the application of formulas or algorithms, the<br>application of procedures for transforming available information and the<br>interpretation of results                                               | 20 | B3                                                | C1<br>C3 | D3 |  |  |

## Other comments on the Evaluation

Following the policy guidelines of the Center, the students can choose between two systems of evaluation: continuous evaluation and evaluation at the end of the term.

In all the evaluation tests, the competences CG3, CE1 and CE3 will be evaluated.

#### 1. CONTINUOUS ASSESSMENT.

- The system of continuous assessment (EC) will consist of:
  - $\circ\,$  a) A problem solving test. The qualification will be ECa, with maximum score of 1 points.
  - $\circ$  b) A problem solving session on topics 1, 2 and 3. The score will be ECb, and the subtotal EC1 = ECa + ECb can have a maximum value of 5 points.
  - $\circ\,$  c) A problem solving test. The qualification will be ECc, with maximum score of 1 poins.
  - $\circ$  d) A problem solving session on topics 4 to 7. The score will be ECd, and the subtotal EC2 = ECc + ECd can have a maximum value of 5 points. This last test will coincide in the calendar and schedule with the official exam date in the first opportunity evaluation.
- The final score of the first opportunity for students who follow continuous assessment (CE) is obtained by adding the two previous subtotals: EC = EC1 + EC2.
- The planning of the different intermediate assessment tests will be approved by an Academic Committee of Degree (CAG) and will be available at the beginning of the semester.
- Before the completion or delivery of each test, the date and procedure for reviewing the grades obtained will be indicated, which will be public within a reasonable period of time.
- The continuous assessment tests are not recoverable, that is, if a student cannot meet them within the stipulated period, the teacher does not have to repeat them.
- The qualification obtained in the continuous assessment tests (EC1 and EC2) will be valid only for the current academic year.
- It will be understood that a student accepts this system if he/she presents to take the "b" test for continuous assessment.

#### 2. UNIQUE END-OF-TERM EVALUATION.

- It will be mandatory for students who do not follow continuous assessment to be able to pass the subject at first opportunity.
- It will consist of a problem solving session on topics 1 to 7. The score will be EF.

#### 3. SECOND OPPORTUNITY EVALUATION.

- Students who followed the continuous assessment:
  - The second oportunity exam will be divided into two parts: EX1 (items 1 to 3) with a maximum value of 5 points, and EX2 (items 4 to 7) with a maximum value of 5 points.
  - $\circ$  The students who followed the continuous evaluation will choose if to do: only EX1, only EX2 or both parties. The final note will be: EF = max (EX1, EC1) + max (EX2, EC2).
- Students who did not follow the continuous evaluation. It consists of a single evaluation with the same format as the first opportunity (a problem solving session on topics 1 to 7). The score will be EF.

#### 4. EXTRAORDINARY END OF CAREER CALL

• It will have the same format as the unique end-of-term evaluation.

#### 5. OBSERVATIONS.

- Student who chose continuous assessment or takes any of the two final global exams of first or second opportunity are considered as presented.
- It is considered that the subject is approved if the final grade is equal to or greater than 5.
- In case of detection of plagiarism in any of the tests, the final grade will be SUSPENSE (0) and the fact will be communicated to the Center Head for the appropriate purposes.

# Sources of information

## Basic Bibliography

F. T. Ulaby, U. Ravaioli, Fundamentals of Applied Electromagnetics, Global Edition 7/e, Pearson Education Limited, 2015 D. K. Cheng, Fundamentos de Electromagnetismo para Ingeniería, Addison Wesley, 1998

**Complementary Bibliography** 

D. K. Cheng, **Fundamentals of Engineering Electromagnetics**, New International Edition, Pearson, 2013

J. R. Reitz, F. J. Milford, R. W. Christy, **Fundamentos de la Teoría Electromagnética**, 4ª Edición, Addison Wesley, 1996 David J. Griffiths, **Introduction to Electrodynamics**, 4ª Edición, Pearson Education Limited, 2012

F. Dios, D. Artigas, et all., Campos Electromagnéticos, Ediciones UPC, 1998

W. H. Hayt, J. A. Buck, Teoría Electromagnética, 8ª Edición, Mc Graw Hill, 2012

D. K. Cheng, Field and Wave Electromagnetics, 2ª Edición, Addison Wesley, 1998

M. F. Iskander, Electromagnetic Fields and Waves, 2ª Edición, Prentice Hall, 2012

# Recommendations

#### Subjects that continue the syllabus

Electromagnetic Transmission/V05G300V01303

# Subjects that are recommended to be taken simultaneously

Mathematics: Calculus 2/V05G300V01203

# Subjects that it is recommended to have taken before

Mathematics: Linear algebra/V05G300V01104 Mathematics: Calculus 1/V05G300V01105