Universida_{de}Vigo

Subject Guide 2015 / 2016

IDENTIFYIN				
<u> </u>	nción Distribuída			
Subject	(*)Computación			
	Distribuída			
Code	V05M145V01321			
Study	(*)Máster			
programme	Universitario en			
	Enxeñaría de			
	Telecomunicación			
Descriptors	ECTS Credits	Choose	Year	Quadmester
	5	Optional	2nd	1st
Teaching	Spanish			
language	Galician			
	English			
Department				
Coordinator	Mikic Fonte, Fernando Ariel			
Lecturers	Burguillo Rial, Juan Carlos			
	Mikic Fonte, Fernando Ariel			
	Rodríguez Hernández, Pedro Salvador			
E-mail	mikic@det.uvigo.es			
Web	http://faitic.uvigo.es			
General	This course will provide a vision of group of the mo	st usual technologi	es inside the dis	tributed computing. They
description	will tackle subjects such as the distributed transac computing, and cluster computing; the distributed computing.			

Competencies

Code

- A2 CB2 Students must apply their knowledge and ability to solve problems in new or unfamiliar environments within broader (or multidisciplinary) contexts related to their field of study.
- A4 CB4 Students must communicate their conclusions, and the knowledge and reasons stating them-, to specialists and non-specialists in a clear and unambiguous way.
- A5 CB5 Students must have learning skills to allow themselves to continue studying in largely self-directed or autonomous way
- B8 CG8 The ability to apply acquired knowledge and to solve problems in new or unfamiliar environments within broader and multidiscipline contexts, being able to integrate knowledge.
- C24 CE24/TE1 Ability to understand the fundamentals of distributed systems and distributed computing paradigms, and its application in the design, development and management in grid, ubiquitous computing scenarios and cloud systems.

Learning outcomes	Training and	
Expected results from this subject		
	Learning Results	
To earn skills in the design, development and management of distributed systems.	A2	
	B8	
	C24	
To undertand the functional bases of the distributed systems.		
	A5	
	C24	
To know the distinct concepts related with the distributed computing: clustering, grids, cloud computing		
and ubiquitous computing.	B8	
	C24	
To earn skills for the application of intelligent systems in the distributed computing.		
	A5	
	B8	
	C24	

5. Parallel and evolutionary computation

Contents	
Topic	
1. Transactions	1. Concurrency problems
	2. Recoverability problems
	3. Deadlocks
	4. Optimistic concurrency control
	5. Timestamps
2. Replication	System model and group communication
•	2. Fault-tolerant services
	3. Case studies of high available services
	4. Transactions with replicated data
3. Grid, Cluster, and Cloud computing	Basic concepts of grid computing
	2. Basic concepts of cluster computing.
	3. Basic concepts of cloud computing.
4. Distributed artificial intelligence	Intelligent agents and multiagent systems
-	2. Theory of games applied to multiagent systems: coordination,
	competition, negotiation, auctions, electronic trade

3. Complex distributed systems and auto-organised ones

2. Algorithms and evolutionary programming: genetics, memetics,

3. Optimisation by means of evolutionary technics and parallelization

1. Distributed Computing and parallelization

differential evolution, intelligence of swarm.

Planning			
	Class hours	Hours outside the classroom	Total hours
Master Session	17	0	17
Autonomous practices through ICT	7.5	0	7.5
Autonomous troubleshooting and / or exercises	0	92.5	92.5
Short answer tests	3	0	3
Reports / memories of practice	0	2.5	2.5
Systematic observation	2.5	0	2.5
*The information in the planning table is for guida	nce only and does no	ot take into account the het	erogeneity of the students.

Methodologies	
	Description
Master Session	Theoretical classes with practical cases. Besides, problems will be proposed for solving them in
	autonomous way.
Autonomous practices	Practices in laboratory realised by means of computers connected in network and/or virtual
through ICT	machines.
Autonomous	Work of study on the contents of the theoretical classes, as well as of support to the realisation and
troubleshooting and / o	r achievement of the practices of laboratory.
exercises	

Personalized attention	
Methodologies	Description
Autonomous practices through ICT	The personalised attention will carry out in the practical part of the course, as in the tutorial time.
Tests	Description
Systematic observation	The personalised attention will carry out in the practical part of the course, as in the tutorial time.

Assessment					
	Description	Qualification	ı T	rainii	ng and
			Lea	rning	Results
Short answer tests	Examinations composed by a series of short answer questions and/or testype ones that the student will have to answer in the classroom individually.	t 70	A2 A4 A5	B8	C24

Reports / memories	Detailed report of the tasks during the realisation of the practices of	20	A2	В8	C24
of practice	laboratory carried out in group.		Α4		
Systematic	Observation by the professor of the work carried out by the students in	10	A2	В8	C24
observation	the classroom during the realisation of the practices of laboratory carried		A4		
	out in group. Level of participation in those practices.		Α5		

Other comments on the Evaluation

The students can decide being evaluated according to a model of continuous evaluation (reviewed previously) or realise a final examination. The fact a student answer the first examination of continuous evaluation means he/she opts by this model of evaluation (in contrary case he/she opts by the model of final examination). Once the students opt by the model of continuous evaluation their qualification will not be able to be never "No presented".

1- CONTINUOUS EVALUATION

To surpass the course requires a minimum qualification of 5 points. The qualification will be the result to add the qualifications received in each one of the following parts:

Written exam 1:

- o Dates: On the fourth week of the course
- Individually
- o Contents: Given until this moment
- o Type: Series of short answer questions and/or test type ones
- Maximum punctuation = 5 points

Written exam 2:

- o Dates: Official calendar (coinciding with the final examination for those that opted by this modality)
- Individually
- o Contents: Given until this moment excepting those that already were evaluated in the written exam 1.
- Type: Series of short answer questions and/or test type ones
- Maximum punctuation = 2 points

Practices:

- o Dates: Weeks 6, 7, and 8
- o In group
- Maximum punctuation = 3 points

2- FINAL EXAMINATION

To surpass the course requires a minimum qualification of 5 points.

Written exam:

- o Dates: Official calendar
- Individually
- o Contents: Given in the whole course (including practical).
- Type: Series of short answer questions and/or test type ones
- Maximum punctuation = 10 points

3- EXTRAORDINARY EVALUATION

The students will be evaluated using the modality of "final examination"

Sources of information

REFERENCE BIBLIOGRAPHY

"Cloud computing bible". Barrie Sosinsky. Wiley Publishing, Inc. 2011. ISBN: 978-0-470-90356-8

"Grid Computing and Cluster Computing". C. S. R. PRABHU. PHI Learning Pvt. Ltd. 2008. ISBN: 9788120334281

"Distributed systems. Concepts and design". George Coulouris, Jean Dollimore, Tim Kindberg and Gordon Blair. Fifth Edition, published by Addison Wesley, May 2011. ISBN 0-13-214301-1

"Introduction to Grid Computing". Bart Jacob, Michael Brown, Kentaro Fukui, , Nihar Trivedi. http://www.redbooks.ibm.com/redbooks/pdfs/sg246778.pdf

- Michael Wooldridge, An Introduction to Multiagent Systems, Addison-Wesley, 2a, 2009.
- Stuart Russell, Peter Norvig, Artificial Intelligence: A Modern Approach,, Prentice Hall, 3a, 2014.
- A.E. Eiben, J.E. Smith. Introduction to Evolutionary Computing (Natural Computing Series). Springer, 2008.
- Dan Simon. Evolutionary Optimization Algorithms. Wiley, 1e, 2013.
- Rauber, Thomas, Rünger, Gudula. Parallel Programming for Multicore and Cluster Systems. Springer, 2013.

NOTE: Additional materials will be provided.

Recommendations