Universida_{de}Vigo

Subject Guide 2015 / 2016

IDENTIFYIN				
	systems design			
Subject	Integrated systems			
	design			
Code	V05G300V01944			
Study	(*)Grao en			
programme	Enxeñaría de			
	Tecnoloxías de			
	Telecomunicación			
Descriptors	ECTS Credits	Choose	Year	Quadmester
	6	Optional	4th	1st
Teaching	Spanish			
language	Galician			
	English			
Department		,		
Coordinator	Rodríguez Hernández, Pedro Salvador			
Lecturers	Gil Castiñeira, Felipe José			
	Rodríguez Hernández, Pedro Salvador			
E-mail	pedro.rodriguez@uvigo.es			
Web	http://faitic.uvigo.es			
General	Embedded systems are part of almost all the diary ac	tivities that involv	e an electronic	device (the alarm clock,
description	the mobile phone, the car). This course introduces the main concepts behind modern embedded systems that			
•	include an operating system, and puts them in practi documentation will be provided in English.			

Competencies

Code

- B3 CG3: The knowledge of basic subjects and technologies that capacitates the student to learn new methods and technologies, as well as to give him great versatility to confront and update to new situations
- B4 CG4: The ability to solve problems with initiative, to make creative decisions and to communicate and transmit knowledge and skills, understanding the ethical and professional responsibility of the Technical Telecommunication Engineer activity.
- B9 CG9: The ability to work in multidisciplinary groups in a Multilanguage environment and to communicate, in writing and orally, knowledge, procedures, results and ideas related with Telecommunications and Electronics.
- C87 (CE87/OP30) The ability to understand the specific requirements for integrated circuits with strict real time restrictions.
- C88 (CE88/OP31) The ability to formulate and solve problems of design and development of integrated systems.
- D2 CT2 Understanding Engineering within a framework of sustainable development.
- D3 CT3 Awareness of the need for long-life training and continuous quality improvement, showing a flexible, open and ethical attitude toward different opinions and situations, particularly on non-discrimination based on sex, race or religion, as well as respect for fundamental rights, accessibility, etc.
- D4 CT4 Encourage cooperative work, and skills like communication, organization, planning and acceptance of responsibility in a multilingual and multidisciplinary work environment, which promotes education for equality, peace and respect for fundamental rights.

Learning outcomes			
Expected results from this subject Tro		aining and Learning	
		Resul	ts
Know the technological base which supports the most recent investigations in the study and design of integrated systems.	В3	C87	
Understand the basic aspects of the special requirements inherent to embedded systems with hard real time restrictions	В3	C87	D3
Adopt a global view of the problem of programming environments with real-time restrictions, and	В3	C88	D2
know the proper tools for dealing with them, so that embedded systems can be addressed with a	B4		D4
system level approach.	В9		
Understand the basic elements of fault prevention and fault tolerance	В3	C88	

Master the concepts related to the organisation of this kind of systems software		C88	D4
	B4		
	В9		
Handle the tasks scheduling and resources sharing techniques in embedded systems	B3	C88	
	B4		
Become familiar with the use of abstraction platforms for developing embedded systems	B4	C88	
· · · · · · · · · · · · · · · · · · ·	В9		

Contents	
Topic	
Concept of embedded system	Definition of embedded system
	Real-time systems
	Characteristics
Operating systems for embedded systems	Operating systems with real-time restrictions
	Multitasking: threads and processes
	Synchronization
Architectures of embedded systems	ARM, MIPS
	Microprocessors
Process scheduling	Cyclic executives
	Priority-driven scheduling: DMS, EDF
	Access synchronization
Reliability and fault tolerance	Fault prevention and fault tolerance
	Static and dynamic redundancy
	Security, reliability and dependability
Distributed embedded systems	Communication mechanisms
	Field buses
Abstraction platforms for the development of	OSGI
embedded systems	Android
	MAEMO
Communication with sensors and actuators	I/O Hardware
	Coping with concurrency
	The Analog/Digital interface

Planning			
	Class hours	Hours outside the classroom	Total hours
		Classicotti	
Presentations / exhibitions	1	5	6
Laboratory practises	14	0	14
Group tutoring	6	10	16
Integrated methodologies	0	55	55
Master Session	19	38	57
Short answer tests	2	0	2

^{*}The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies	
	Description
Presentations /	Presentation by the students of the developed projects results.
exhibitions	Through this methodology the competencies CT2, CT4, CG4, CG9, CE87 and CE88 are developed.
Laboratory practises	Development by the students of guided and supervised assignments in the laboratory.
	Through this methodology the competencies CT2, CT3, CG3, CG4, CE87 and CE88 are developed.
Group tutoring	Meetings of the professors with the students for tracking the current status and further planning the
	project activities.
	Through this methodology the competencies CT2, CT4, CG4, CG9, CE87 and CE88 are developed.
Integrated	We use learning projects based training: the students carry out a project along the semester to
methodologies	resolve a complex problem by means of planning, design and implementation of a series of
	activities.
	Through this methodology the competencies CT2, CT3, CT4, CG3, CG4, CG9, CE87 and CE88 are
	developed.
Master Session	Professors present the main theoretical contents related to embedded systems with real-time
	restrictions.
	Through this methodology the competencies CT3, CG3, CE87 and CE88 are developed.

Personalized attention			
Methodologies	Description		

Master Session	The professors of the subject will provide individual attention to the students during the, solving their doubts and questions. In addition, the professors will advise and guide the students during the realization of their tasks.
Laboratory practises	The professors of the subject will provide individual attention to the students during the, solving their doubts and questions. In addition, the professors will advise and guide the students during the realization of their tasks.
Group tutoring	The professors of the subject will provide individual attention to the students during the, solving their doubts and questions. In addition, the professors will advise and guide the students during the realization of their tasks.
Integrated methodologies	The professors of the subject will provide individual attention to the students during the, solving their doubts and questions. In addition, the professors will advise and guide the students during the realization of their tasks.

Assessment				
	Description	Qualification	Le	ning and earning lesults
Presentations / exhibitions	Once their project is implemented, the students will perform a public presentation of its design, development and results, having to answer successfully to questions.	10	B4 B9	C87
Laboratory practises	The students will fill questionnaires to asses the correct realization and understanding of the laboratory tasks.	10	B3 B4	C87 C88
Group tutoring	A continuous tracking of the design and evolution of the implementation will be held during the realization of the project. Periodically, the students will present the state and results of their projects, as well as the scheduled tasks.	l 10	B4 B9	C87 C88
Integrated methodologies	The students will be divided in groups for accomplishing the design, implementation and proof of an embedded system. The result will be evaluated after the his delivery, assessing aspects such as correction, quality, performance and functionalities.	30	B3 B4 B9	C87 C88
Short answer tests	Students will be evaluated to asses what they have learned in master sessions.	40	_ В3 _	C87 C88

Other comments on the Evaluation

In order to pass the course it is necessary to complete the different parts of the subject (master sessions, practices in labs, and projects). The final grade will be the **weighted geometric mean** of the grades of the different parts (i.e. it is not possible to pass the subject with a zero in one part). If "x" is the grade obtained for the master sessions, "y" for the practices in labs, and "z" for the project, the final grade will be: $grade = x^0.4*y^0.1*z^0.5$

During the first month, students must declare if they opt for continuous or final assessment. Students who select continuous assessment and submit the first task or questionnaire may not be listed as "Absent".

Students who opt for the final assessment procedure must pass the short answer test (40%), submit a project (50%) and submit the laboratory practises (10%). These parts will be evaluated as indicated in the tests description section. The final grade will be the **weighted geometric mean** of the grades of the different parts. Besides, they must submit an additional dossier with detailed information about the events and issues that arose during the execution of the different tasks, and especially the project. In addition, during the first month of the course, professors will notify students who opted for final assessment if they have to do the tutored work individually.

Although the project will be developed in groups, the ongoing activities of each student in a group will be monitored individually. In case a student's performance is below his or her groupmates, he or she could be expelled from the group or graded on a individual basis.

Second opportunity to pass the course

The end of course exam will only be held by students who failed the end of semester exams.

In order to pass the course it is necessary to complete the different parts of the subject: pass the short answer test (40%), submit a project (50%) and submit the laboratory practises (10%). These parts will be evaluated as indicated in the tests description section. The final grade will be the **weighted geometric mean** of the grades of the different parts. Besides, it will be necessary to submit an additional dossier with detailed information about the events and issues that arose during the execution of the different tasks, and especially the project.

Students that have opted by the continuous assessment procedure, can decide to maintain the grades of the parts

they have already passed in the first opportunity or discard them.

Other comments

The grades obtained are only valid for the current academic year.

The use of any material during the tests will have to be explicitly authorized.

Sources of information

A. Burns & A. Wellings, istemas de Tiempo Real y Lenguajes de Programación, 3,

E.A. Lee & S.A. Seshia, Introduction to Embedded Systems, 1,

P. Marwedel, Embedded System Design, 2,

P. Barry & P. Crowley, Modern Embedded Computing, 1,

S. Barrett & J. Kridner, Bad to the Bone: Crafting Electronics Systems with Beaglebone and BeagleBone Black, 1,

Recommendations

Subjects that it is recommended to have taken before

Informatics: Computer Architecture/V05G300V01103
Distributed and Concurrent Programming/V05G300V01641
Operating Systems/V05G300V01541