Universida_{de}Vigo

Subject Guide 2015 / 2016

IDENTIFYIN	• =					
<u></u>	Matemáticos na Enxeñaría	Industrial				
Subject	(*)Métodos					
	Matemáticos na					
	Enxeñaría					
	Industrial					
Code	V04M146V01102					
Study	(*)Máster					
programme	Universitario en					
	Enxeñaría de					
	Organización					
Descriptors	ECTS Credits		Choose	Year	Quadmester	
	6		Mandatory	1st	1st	
Teaching	Galician					
language						
Department						
Coordinator	Area Carracedo, Iván Carlos					
Lecturers	Area Carracedo, Iván Carlos					
	González Rodríguez, Ramón					
E-mail	area@uvigo.es					
Web						
General	(*)The aims of this course are	2				
description	1) that students know the bas	sic theory of one comp	lex variable and the	e applications i	n the field of engineering	
-	of Laplace, Fourier and Z tran	isforms,				
	2) that the students learn how to use some numerical methods for solving equations and systems of nonlinear					
	equations, as well as differential equations and systems of differential equations,					
	3) that the students will learn	the basic theory of				
	graphs and their applications	to discrete optimizatio	n.			
		•				

Со	mpetencies
Coc	de
A1	(*)Posuír e comprender coñecementos que acheguen unha base ou oportunidade de ser orixinais no desenvolvemento
	e/ou aplicación de ideas, adoito nun contexto de investigación.

A2 (*)Que os estudantes saiban aplicar os coñecementos adquiridos e a súa capacidade de resolución de problemas en contornos novos ou pouco coñecidos dentro de contextos máis amplos (ou multidisciplinares) relacionados coa súa área de estudo.

Learning outcomes

Expected results from this subject	Training and Learning Results
(*) Knowledge and application of numerical methods for nonlinear equations, systems of nonlinear	A1
equations, and differential equations.	A2
(*) Understanding the basics of the theory of one complex variable	A1
(*)Knowledge of transform methods and their application in engineering	A1
	A2
(*)Knowledge of the basics of graph theory and its application to solving problems of discrete optimiza	tion A1
	A2

Contents

T

IOPIC	
Numerical methods for solving nonlinear	Bisectio
equations and systems	method
	nonlinos

on and successive approximation methods. The Newton-Raphson d. Variants of Newton method for solving equations and systems of nonlinear equations. Algorithms for simultaneous approximation of all zeros of a given polynomial.

Numerical methods for solving equations and systems of differential equations	Numerical solution of initial value problems: one-step and multistep methods. Numerical solution of boundary value problems: finite difference method and shooting method.
Complex variable	Functions of one complex variable. Complex integration. Power series and Laurent series. Singularities, zeros and residues. Applications
Transforms for continuous and discrete systems.	Laplace transform. Z transform. Fourier transform. Discrete Fourier transform: FFT algorithm. Applications.
Graphs and discrete optimization	Graphs, digraphs and interconnecting nets. Trees. Spanning tree of minimal cost. Flows and connectivity. Applications.

Planning			
	Class hours	Hours outside the	Total hours
		classroom	
Practice in computer rooms	16	16	32
Master Session	14	35	49
Troubleshooting and / or exercises	14	42	56
Long answer tests and development	3	0	3
Troubleshooting and / or exercises	4	6	10

*The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies	
	Description
Practice in computer	Informatics tools will be used to implement the numerical methods and solve exercises
rooms	
Master Session	The teacher will present in the theoretical classes the contents of the subject.
Troubleshooting and / o	r The teacher will solve problems and exercises and the students will be requested to solve similar
exercises	exercises.

Personalized attention			
Methodologies	Description		
Troubleshooting and / or exercises	Teachers will personally solve the doubts of students.		
Practice in computer rooms	Teachers will personally solve the doubts of students.		
Master Session	Teachers will personally solve the doubts of students.		

	Description	Qualificati	on Training and
			Learning Results
Practice in computer rooms	Several tests will be made in laboratory classes by using appropriate informatics tools.	30	A1 A2
Long answer tests and development	A final exam will be done on the contents of the subject	30	A1 A2
Troubleshooting and / or exercises	Various tests will be carried out and assignments will be scheduled.	40	A1 A2

Other comments on the Evaluation

Continuous assessment following the above criteria will take place.

The students who renounces the continuous assessment will be evaluated with a single exam on the contents of the subject. This exam will account for 70% of the final mark. The remaining 30% will be the mark obtained at laboratory lectures (including periodic tests).

The evaluation in second exam will be performed similarly to the case of waiver continuous assessment: 70% of the mark on a final exam and 30% of the mark corresponding to work done at laboratory lectures (including periodic tests). Ethical commitment:

It is expected that students present an adequate ethical behavior. In the case of detecting a ethical inadequate behavior (copying, plagiarism, use of unauthorized electronic devices, for example) it shall be considered that the student does not meet the requirements for passing the subject.

Sources of information

J.W. Brown, R.V. Churchill, Variable Compleja y Aplicaciones, 7ª,

J. Glyn y otros, Matemáticas Avanzadas para Ingeniería, 2ª,

R.N. Bracewell, The Fourier Transform and its Applications, 3ª,

G. Chartrand, O.R. Oellermann, Applied and Algorithmic Graph Theory, 1ª,

R.L. Burden, J.D. Faires, **Análisis Numérico**, 9^ª, C.F. Gerald, P.O. Wheatley, **Análisis Numérico con Aplicaciones**, 6^ª, E. Kreyszig, **Advanced Engineering Mathematics**, 10^ª,

Recommendations